Danvers, MA, United States
Danvers, MA, United States

Time filter

Source Type

Patent
Cell Signaling Technology Inc. | Date: 2016-11-30

The invention provides the identification of the presence of mutant ROS protein in human cancer. In some embodiments, the mutant ROS are FIG-ROS fusion proteins comprising part of the FIG protein fused to the kinase domain of the ROS kinase. In some embodiments, the mutant ROS is the overexpression of wild-type ROS in cancerous tissues (or tissues suspected of being cancerous) where, in normal tissue of that same tissue type, ROS is not expressed or is expressed at lower levels. The mutant ROS proteins of the invention are anticipated to drive the proliferation and survival of a subgroup of human cancers, particularly in cancers of the liver (including bile duct), pancreas, kidney, and testes. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS polypeptides (e.g., a FIG-ROS(S) fusion polypeptide), probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides. The identification of the mutant ROS polypeptides enables new methods for determining the presence of these mutant ROS polypeptides in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer characterized by the mutant polynucleotides or polypeptides, which are also provided by the invention.


Patent
Cell Signaling Technology Inc. | Date: 2016-05-25

The invention discloses binding agents to the E746-A750 deletion and the L858R point mutations in the epidermal growth factor receptor (EGFR) molecule, and methods for use thereof, including methods for the diagnosis and treatment of cancer.


Patent
Cell Signaling Technology Inc. | Date: 2016-04-12

In accordance with the invention, a novel gene translocation, (5q32, 6q22), in human non-small cell lung carcinoma (NSCLC) that results in a fusion proteins combining part of CD74 with Proto-oncogene Tyrosine Protein Kinase ROS Precursor (ROS) kinase has now been identified. The CD74-ROS fusion protein is anticipated to drive the proliferation and survival of a subgroup of NSCLC tumors. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides. The disclosed identification of the new fusion protein enables new methods for determining the presence of these mutant ROS kinase polypeptides in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer characterized by the mutant polynucleotides or polypeptides, which are also provided by the invention.


There is provided a motif-specific, context-independent antibody that specifically binds a recurring, modified motif consisting of (i) at least one sumoylated lysine residue, and (ii) one or more degenerate amino acids bound by a peptide bond to said sumoylated lysine residue, said antibody specifically binding said motif in a plurality of non-homologous peptides or proteins within an organism in which it recurs. Also provided is a motif-specific, context-independent antibody that specifically binds a recurring, modified motif consisting of (i) a C-terminal aspartic acid residue, and (ii) one or more degenerate amino acids bound by a peptide bond to said C-terminal aspartic acid residue, said antibody specifically binding said motif in a plurality of non-homologous peptides or proteins within an organism in which it recurs.


Patent
Cell Signaling Technology Inc. | Date: 2016-08-02

Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have been identified herein in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides. The disclosed identification of this new fusion protein enables methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer characterized by the mutant polynucleotides or polypeptides.


Patent
Cell Signaling Technology Inc. | Date: 2015-06-10

The invention provides the identification of the presence of mutant ROS protein in human cancer. In some embodiments, the mutant ROS are FIG-ROS fusion proteins comprising part of the FIG protein fused to the kinase domain of the ROS kinase. In some embodiments, the mutant ROS is the overexpression of wild-type ROS in cancerous tissues (or tissues suspected of being cancerous) where, in normal tissue of that same tissue type, ROS is not expressed or is expressed at lower levels. The mutant ROS proteins of the invention are anticipated to drive the proliferation and survival of cancers of the liver (including bile duct). The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS polypeptides (e.g., a FIG-ROS(S) fusion polypeptide), probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides. The identification of the mutant ROS polypeptides enables methods for inhibiting the progression of a cancer characterized by the mutant polynucleotides or polypeptides.


Patent
Cell Signaling Technology Inc. | Date: 2016-09-28

In accordance with the invention, a novel gene translocation, (5q32, 6q22), in human non-small cell lung carcinoma (NSCLC) that results in a fusion proteins combining part of CD74 with Proto-oncogene Tyrosine Protein Kinase ROS Precursor (ROS) kinase has now been identified. The CD74-ROS fusion protein is anticipated to drive the proliferation and survival of a subgroup of NSCLC tumors. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides. The disclosed identification of the new fusion protein enables new methods for determining the presence of these mutant ROS kinase polypeptides in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer characterized by the mutant polynucleotides or polypeptides, which are also provided by the invention.


Patent
Cell Signaling Technology Inc. | Date: 2015-10-15

The disclosure features over 5000 methylation and acetylation sites identified in human cell line, human serum and mouse tissues, peptides (including AQUA peptides) comprising a methylation or acetylation site of the disclosure, antibodies specifically bind to a methylation or acetylation site of the disclosure, and diagnostic and therapeutic uses of the above.


Patent
Cell Signaling Technology Inc. | Date: 2015-09-08

The invention discloses a previously unidentified subset of mammalian non-small cell lung carcinomas (NSCLC) in which platelet-derived growth factor receptor alpha (PDGFR) is expressed and is driving the disease, and provides methods for identifying a mammalian NSCLC tumor that belongs to a subset of NSCLC tumors in which PDGFR is expressed, and for identifying a NSCLC tumor that is likely to respond to a PDGFR-inhibiting therapeutic. The invention also provides methods for inhibiting the progression of a mammalian NSCLC tumor in which PDGFR is expressed, and for determining whether a compound inhibits the progression of a PDGFR-expressing mammalian NSCLC tumor.


Patent
Cell Signaling Technology Inc. | Date: 2015-09-30

Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have been identified herein in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides. The disclosed identification of this new fusion protein enables methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer characterized by the mutant polynucleotides or polypeptides.

Loading Cell Signaling Technology Inc. collaborators
Loading Cell Signaling Technology Inc. collaborators