Time filter

Source Type

Nunez M.T.,University of Chile | Nunez M.T.,Cell Dynamics and Biotechnology Institute | Tapia V.,University of Chile | Tapia V.,Cell Dynamics and Biotechnology Institute | And 5 more authors.
American Journal of Physiology - Cell Physiology | Year: 2010

Intestinal iron absorption comprises the coordinated activity of the influx transporter divalent metal transporter 1 (DMT1) and the efflux transporter ferroportin (FPN). In this work, we studied the movement of DMT1 and FPN between cellular compartments as a function of iron supply. In rat duodenum, iron gavage resulted in the relocation of DMT1 to basal domains and the internalization of basolateral FPN. Considerable FPN was also found in apical domains. In Caco-2 cells, the apical-to-basal movement of cyan fluorescent protein-tagged DMT1 was complete 90 min after the addition of iron. Steady-state membrane localization studies in Caco-2 cells revealed that iron status determined the apical/ basolateral membrane distribution of DMT1 and FPN. In agreement with the membrane distribution of the transporters, 55Fe flux experiments revealed inward and outward iron fluxes at both membrane domains. Antisense oligonucleotides targeted to DMT1 or FPN inhibited basolateral iron uptake and apical iron efflux, respectively, indicating the participation of DMT1 and FPN in these fluxes. The fluxes were regulated by the iron supply; increased iron reduced apical uptake and basal efflux and increased basal uptake and apical efflux. These findings suggest a novel mechanism of regulation of intestinal iron absorption based on inward and outward fluxes at both membrane domains, and repositioning of DMT1 and FPN between membrane and intracellular compartments as a function of iron supply. This mechanism should be complementary to those based in the transcriptional or translational regulation of iron transport proteins. Copyright © 2010 the American Physiological Socie.

Loading Cell Dynamics and Biotechnology Institute collaborators
Loading Cell Dynamics and Biotechnology Institute collaborators