Time filter

Source Type

De Carcer G.,Cell Division and Cancer Group | Manning G.,La Jolla Salk Institute | Malumbres M.,Cell Division and Cancer Group
Cell Cycle | Year: 2011

Mammalian Polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal Polo Box Domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family, and the possible kinase- and PBD-independent functions of Polo-like kinases. © 2011 Landes Bioscience.

de Castro I.P.,Cell Division and Cancer Group | Malumbres M.,Cell Division and Cancer Group
Genes and Cancer | Year: 2012

Cell cycle deregulation is a common motif in human cancer, and multiple therapeutic strategies are aimed to prevent tumor cell proliferation. Whereas most current therapies are designed to arrest cell cycle progression either in G1/S or in mitosis, new proposals include targeting the intrinsic chromosomal instability (CIN, an increased rate of gain or losses of chromosomes during cell division) or aneuploidy (a genomic composition that differs from diploid) that many tumor cells display. Why tumors cells are chromosomally unstable or aneuploid and what are the consequences of these alterations are not completely clear at present. Several mitotic regulators are overexpressed as a consequence of oncogenic alterations, and they are likely to alter the proper regulation of chromosome segregation in cancer cells. In this review, we propose the relevance of TPX2, a mitotic regulator involved in the formation of the mitotic spindle, in oncogene-induced mitotic stress. This protein, as well as its partner Aurora-A, is frequently overexpressed in human cancer, and its deregulation may participate not only in chromosome numeric aberrations but also in other forms of genomic instability in cancer cells. © The Author(s) 2013.

Manchado E.,Cell Division and Cancer Group | Guillamot M.,Cell Division and Cancer Group | Malumbres M.,Cell Division and Cancer Group
Cell Death and Differentiation | Year: 2012

Cell cycle deregulation is a common feature of human cancer. Tumor cells accumulate mutations that result in unscheduled proliferation, genomic instability and chromosomal instability. Several therapeutic strategies have been proposed for targeting the cell division cycle in cancer. Whereas inhibiting the initial phases of the cell cycle is likely to generate viable quiescent cells, targeting mitosis offers several possibilities for killing cancer cells. Microtubule poisons have proved efficacy in the clinic against a broad range of malignancies, and novel targeted strategies are now evaluating the inhibition of critical activities, such as cyclin-dependent kinase 1, Aurora or Polo kinases or spindle kinesins. Abrogation of the mitotic checkpoint or targeting the energetic or proteotoxic stress of aneuploid or chromosomally instable cells may also provide further benefits by inducing lethal levels of instability. Although cancer cells may display different responses to these treatments, recent data suggest that targeting mitotic exit by inhibiting the anaphase-promoting complex generates metaphase cells that invariably die in mitosis. As the efficacy of cell-cycle targeting approaches has been limited so far, further understanding of the molecular pathways modulating mitotic cell death will be required to move forward these new proposals to the clinic. © 2012 Macmillan Publishers Limited All rights reserved.

Manchado E.,Cell Division and Cancer Group | Eguren M.,Cell Division and Cancer Group | Malumbres M.,Cell Division and Cancer Group
Biochemical Society Transactions | Year: 2010

The APC/C (anaphase-promoting complex/cyclosome) is an E3 ubiquitin ligase that targets specific substrates for degradation by the 26S proteasome. APC/C activity depends on two cofactors, namely Cdc20 (cell division cycle 20) and Cdh1, which select the appropriate targets for ubiquitination. It is well established that APC/C is a target of the SAC (spindle assembly checkpoint) during mitosis and has critical roles in controlling the protein levels of major regulators of mitosis and DNA replication. In addition, recent studies have suggested new cell-cycle-independent functions of APC/C in non-mitotic cells and specifically in neuronal structure and function. Given the relevant functions of APC/C in cell proliferation and neuronal physiology, modulating APC/C activity may have beneficial effects in the clinic. © The Authors Journal compilation.

Malumbres M.,Cell Division and Cancer Group
Physiological Reviews | Year: 2011

The basic biology of the cell division cycle and its control by protein kinases was originally studied through genetic and biochemical studies in yeast and other model organisms. The major regulatory mechanisms identified in this pioneer work are conserved in mammals. However, recent studies in different cell types or genetic models are now providing a new perspective on the function of these major cell cycle regulators in different tissues. Here, we review the physiological relevance of mammalian cell cycle kinases such as cyclin-dependent kinases (Cdks), Aurora and Polo-like kinases, and mitotic checkpoint regulators (Bub1, BubR1, and Mps1) as well as other less-studied enzymes such as Cdc7, Nek proteins, or Mastl and their implications in development, tissue homeostasis, and human disease. Among these functions, the control of self-renewal or asymmetric cell division in stem/progenitor cells and the ability to regenerate injured tissues is a central issue in current research. In addition, many of these proteins play previously unexpected roles in metabolism, cardiovascular function, or neuron biology. The modulation of their enzymatic activity may therefore have multiple therapeutic benefits in human disease.

Eguren M.,Cell Division and Cancer Group | Manchado E.,Cell Division and Cancer Group | Malumbres M.,Cell Division and Cancer Group
Seminars in Cell and Developmental Biology | Year: 2011

The Anaphase-Promoting Complex or Cyclosome (APC/C) is an E3 ubiquitin ligase whose activation requires the binding of a cofactor, either Cdc20 or Cdh1. While APC/C-Cdc20 is a major player during mitotic exit, APC/C-Cdh1 plays a central role in maintaining quiescence and controlling the onset of DNA replication. In addition, APC/C-Cdh1 is essential for endoreduplication, a process in which several rounds of DNA synthesis occur without mitosis. Recent data suggest that the APC/C is also involved in differentiation and metabolism, and plays important roles in postmitotic cells such as neurons. Thus, the APC/C is not only critical for anaphase onset but also regulates many other cellular processes during G1/S or in quiescent cells. © 2011 Elsevier Ltd.

Malumbres M.,Cell Division and Cancer Group
Molecular Aspects of Medicine | Year: 2013

microRNAs (miRNAs) are small, non-coding RNAs with critical roles in fine-tuning a wide array of biological processes including development, metabolism, and homeostasis. miRNAs expression, similarly to that of protein-coding genes, is regulated by multiple transcriptional networks as well as the epigenetic machinery. miRNA genes can be epigenetically regulated by DNA methylation or specific histone modifications. In addition, miRNAs can themselves repress key enzymes that drive epigenetic remodeling, generating regulatory circuits that have a significant effect in the transcriptional landscape of the cell. Recent evidences also suggest that miRNAs can directly modulate gene transcription in the nucleus through the recognition of specific target sites in promoter regions. Given the widespread distribution of epigenetic marks and miRNA target sites in the genome, the regulatory circuits linking both mechanisms are likely to have a major impact in genome transcription and cell physiology. Not surprisingly, tumor-associated aberrations in the miRNA or epigenetic machineries are widely distributed in human cancer, and we are just starting to understand their relevance in diagnosis, prognosis or therapy. © 2012 Elsevier Ltd. All rights reserved.

Alvarez-Fernandez M.,Cell Division and Cancer Group | Malumbres M.,Cell Division and Cancer Group
BioEssays | Year: 2014

Chromosome segregation requires the ordered separation of the newly replicated chromosomes between the two daughter cells. In most cells, this requires nuclear envelope (NE) disassembly during mitotic entry and its reformation at mitotic exit. Nuclear envelope breakdown (NEB) results in the mixture of two cellular compartments. This process is controlled through phosphorylation of multiple targets by cyclin-dependent kinase 1 (Cdk1)-cyclin B complexes as well as other mitotic enzymes. Experimental evidence also suggests that nucleo-cytoplasmic transport of critical cell cycle regulators such as Cdk1-cyclin B complexes or Greatwall, a kinase responsible for the inactivation of PP2A phosphatases, plays a major role in maintaining the boost of mitotic phosphorylation thus preventing the potential mitotic collapse derived from NEB. These data suggest the relevance of nucleo-cytoplasmic transport not only to communicate cytoplasmic and nuclear compartments during interphase, but also to prepare cells for the mixture of these two compartments during mitosis. © 2014 WILEY Periodicals, Inc.

De Carcer G.,Cell Division and Cancer Group | Malumbres M.,Cell Division and Cancer Group
Nature Cell Biology | Year: 2014

Despite the widespread occurrence of aneuploidy in cancer cells, the molecular causes for chromosomal instability are not well established. Cyclin B2 is now shown to control a pathway-involving the centrosomal kinases aurora A and Plk1 and the tumour suppressor p53-the alteration of which causes defective centrosome separation, aneuploidy and tumour development. © 2014 Macmillan Publishers Limited. All rights reserved.

Song M.S.,Harvard University | Carracedo A.,Harvard University | Salmena L.,Harvard University | Song S.J.,Harvard University | And 3 more authors.
Cell | Year: 2011

PTEN is a frequently mutated tumor suppressor gene that opposes the PI3K/AKT pathway through dephosphorylation of phosphoinositide-3,4,5- triphosphate. Recently, nuclear compartmentalization of PTEN was found as a key component of its tumor-suppressive activity; however its nuclear function remains poorly defined. Here we show that nuclear PTEN interacts with APC/C, promotes APC/C association with CDH1, and thereby enhances the tumor-suppressive activity of the APC-CDH1 complex. We find that nuclear exclusion but not phosphatase inactivation of PTEN impairs APC-CDH1. This nuclear function of PTEN provides a straightforward mechanistic explanation for the fail-safe cellular senescence response elicited by acute PTEN loss and the tumor-suppressive activity of catalytically inactive PTEN. Importantly, we demonstrate that PTEN mutant and PTEN null states are not synonymous as they are differentially sensitive to pharmacological inhibition of APC-CDH1 targets such as PLK1 and Aurora kinases. This finding identifies a strategy for cancer patient stratification and, thus, optimization of targeted therapies. PaperClip: © 2011 Elsevier Inc.

Loading Cell Division and Cancer Group collaborators
Loading Cell Division and Cancer Group collaborators