Time filter

Source Type

Lebeer S.,University of Antwerp | Balog C.I.A.,Leiden University | Nys K.,Cell Death Research and Therapy laboratory | von Ossowski I.,University of Helsinki | And 7 more authors.
Microbial Cell Factories

Background: Although the occurrence, biosynthesis and possible functions of glycoproteins are increasingly documented for pathogens, glycoproteins are not yet widely described in probiotic bacteria. Nevertheless, knowledge of protein glycosylation holds important potential for better understanding specific glycan-mediated interactions of probiotics and for glycoengineering in food-grade microbes.Results: Here, we provide evidence that the major secreted protein Msp1/p75 of the probiotic Lactobacillus rhamnosus GG is glycosylated. Msp1 was shown to stain positive with periodic-acid Schiff staining, to be susceptible to chemical deglycosylation, and to bind with the mannose-specific Concanavalin A (ConA) lectin. Recombinant expression in Escherichia coli resulted in a significant reduction in molecular mass, loss of ConA reactivity and increased sensitivity towards pronase E and proteinase K. Mass spectrometry showed that Msp1 is O-glycosylated and identified a glycopeptide TVETPSSA (amino acids 101-108) bearing hexoses presumably linked to the serine residues. Interestingly, these serine residues are not present in the homologous protein of several Lactobacillus casei strains tested, which also did not bind to ConA. The role of the glycan substitutions in known functions of Msp1 was also investigated. Glycosylation did not seem to impact significantly on the peptidoglycan hydrolase activity of Msp1. In addition, the glycan chain appeared not to be required for the activation of Akt signaling in intestinal epithelial cells by Msp1. On the other hand, examination of different cell extracts showed that Msp1 is a glycosylated protein in the supernatant, but not in the cell wall and cytosol fraction, suggesting a link between glycosylation and secretion of this protein.Conclusions: In this study we have provided the first evidence of protein O-glycosylation in the probiotic L rhamnosus GG. The major secreted protein Msp1 is glycosylated with ConA reactive sugars at the serine residues at 106 and 107. Glycosylation is not required for the peptidoglycan hydrolase activity of Msp1 nor for Akt activation capacity in epithelial cells, but appears to be important for its stability and protection against proteases. © 2012 Lebeer et al; licensee BioMed Central Ltd. Source

Dudek-Peric A.M.,Cell Death Research and Therapy laboratory | Ferreira G.B.,Catholic University of Leuven | Muchowicz A.,Medical University of Warsaw | Wouters J.,Translational Cell and Tissue Research | And 13 more authors.
Cancer Research

Systemic chemotherapy generally has been considered immunosuppressive, but it has become evident that certain chemother-apeutic drugs elicit immunogenic danger signals in dying cancer cells that can incite protective antitumor immunity. In this study, we investigated whether locoregionally applied therapies, such as melphalan, used in limb perfusion for melanoma (Mel-ILP) produce related immunogenic effects. In human melanoma biopsies, Mel-ILP treatment upregulated IL1B, IL8, and IL6 associated with their release in patients' locoregional sera. Although induction of apoptosis in melanoma cells by melphalan in vitro did not elicit threshold levels of endoplasmic reticulum and reactive oxygen species stress associated with danger signals, such as induction of cell-surface calreticulin, prophylactic immunization and T-cell depletion experiments showed that melphalan administration in vivo could stimulate a CD8+ T cell-dependent protective antitumor response. Interestingly, the vaccination effect was potentiated in combination with exogenous calreticulin, but not tumor necrosis factor, a cytokine often combined with Mel-ILP. Our results illustrate how melphalan triggers inflammatory cell death that can be leveraged by immunomodulators such as the danger signal calreticulin. © 2015 American Association for Cancer Research. Source

Discover hidden collaborations