Entity

Time filter

Source Type

San Fedele Superiore, Italy

Masiello F.,Hematology Oncology and Molecular Medicine | Tirelli V.,Hematology Oncology and Molecular Medicine | Sanchez M.,Cell Biology and Neuroscience | Van Den Akker E.,Sanquin Blood Supply | And 8 more authors.
Transfusion | Year: 2014

Background Cultured red blood cells (cRBCs) from cord blood (CB) have been proposed as transfusion products. Whether buffy coats discarded from blood donations (adult blood [AB]) may be used to generate cRBCs for transfusion has not been investigated. Study Design and Methods Erythroid progenitor cell content and numbers and blood group antigen profiles of erythroblasts (ERYs) and cRBCs generated in human erythroid massive amplification (HEMA) culture by CB (n = 7) and AB (n = 33, three females, three males, one AB with rare blood antigens cryopreserved using CB protocols) were compared. Results Variability was observed both in progenitor cell content (twofold) and number of ERYs generated (1 log) by CB and AB in HEMA. The average progenitor cell contents of the subset of AB and CB analyzed were similar. AB generated numbers of ERYs three times lower (p < 0.01) than CB in HEMA containing fetal bovine serum but similar to CB in HEMA containing human proteins. Female AB contained two times fewer (p < 0.05) erythroid progenitor cells but generated numbers of ERYs similar to those generated by male AB. Cryopreserved AB with a rare blood group phenotype and shipped to another laboratory generated great numbers of ERYs, 90% of which matured into cRBCs. Blood group antigen expression was consistent with the donor genotype for ERYs generated both by CB and AB but concordant with that of native RBCs only for cells derived from AB. Conclusion Buffy coats from regular donors, including a donor with rare phenotypes stored under conditions established for CB, are not inferior to CB for the generation of cRBCs. © 2013 American Association of Blood Banks. Source


Varricchio L.,Mount Sinai School of Medicine | Dell'Aversana C.,Institute of Genetics and Biophysics | Nebbioso A.,The Second University of Naples | Migliaccio G.,Cell Biology and Neuroscience | And 6 more authors.
International Journal of Biochemistry and Cell Biology | Year: 2014

To clarify the role of HDACs in erythropoiesis, expression, activity and function of class I (HDAC1, HDAC2, HDAC3) and class IIa (HDAC4, HDAC5) HDACs during in vitro maturation of human erythroblasts were compared. During erythroid maturation, expression of HDAC1, HDAC2 and HDAC3 remained constant and activity and GATA1 association (its partner of the NuRD complex), of HDAC1 increased. By contrast, HDAC4 content drastically decreased and HDAC5 remained constant in content but decreased in activity. In erythroid cells, pull down experiments identified the presence of a novel complex formed by HDAC5, GATA1, EKLF and pERK which was instead undetectable in cells of the megakaryocytic lineage. With erythroid maturation, association among HDAC5, GATA1 and EKLF persisted but levels of pERK sharply decreased. Treatment of erythroleukemic cells with inhibitors of ERK phosphorylation reduced by >90% the total and nuclear content of HDAC5, GATA1 and EKLF, suggesting that ERK phosphorylation is required for the formation of this complex. Based on the function of class IIa HDACs as chaperones of other proteins to the nucleus and the erythroid-specificity of HDAC5 localization, this novel HDAC complex was named nuclear remodeling shuttle erythroid (NuRSERY). Exposure of erythroid cells to the class II-selective HDAC inhibitor (HDACi) APHA9 increased γ/(γ+β) globin expression ratios (Mai et al., 2007), suggesting that NuRSERY may regulate globin gene expression. In agreement with this hypothesis, exposure of erythroid cells to APHA9 greatly reduced the association among HDAC5, GATA1 and EKLF. Since exposure to APHA9 did not affect survival rates or p21 activation, NuRSERY may represent a novel, possibly less toxic, target for epigenetic therapies of hemoglobinopaties and other disorders. © 2014 Elsevier Ltd. Source


Migliaccio G.,Tisch Cancer Institute | Sanchez M.,Cell Biology and Neuroscience | Masiello F.,Cell Biology and Neuroscience | Tirelli V.,Cell Biology and Neuroscience | And 3 more authors.
Cell Transplantation | Year: 2010

Ex vivo-generated erythroblasts represent alternative transfusion products. However, inclusion of bovine components in media used for their growth precludes clinical use, highlighting the importance of developing culture media based on pharmaceutical grade reagents. In addition, because adult blood generates ex vivo lower numbers of erythroblasts than cord blood, cord blood has been proposed as the source of choice for ex vivo erythroblast production. To clarify the potential of adult blood to generate erythroblasts ex vivo, experiments were designed to identify growth factors [stem cell factor (SCF), interleukin-3 (IL-3), erythropoietin (EPO), and/or thrombopoietin (TPO)] and the optimal concentration and addition schedule of hormones (dexamethasone and estradiol) sustaining maximal erythroid amplification from adult blood mononuclear cells (MNC) using media with serum previously defined as human erythroid massive amplification culture (HEMAser). Adult MNC stimulated with SCF and IL-3 in combination with EPO generated a 6-12-fold increase in erythroid cells while TPO was ineffective. Dexamethasone and estradiol (both at 10-6 M) exerted partially overlapping but nonredundant functions. Dexamethasone was indispensable in the first 10 days of culture while estradiol was required from day 10 on. The growth factor and hormone combinations identified in HEMAser were then used to formulate a media composed of dialyzed pharmaceutical grade human albumin, human albumin-lipid liposomes, and iron-saturated recombinant human tranferrin (HEMAdef). HEMAdef sustained erythroid amplification as efficiently as HEMAser for cord blood MNC and 10-fold higher than HEMAser for adult blood MNC. In fact, the numbers of erythroblasts generated in HEMAdef by adult MNC were similar to those generated by cord blood MNC. In conclusion, this study identifies growth factors, hormone combinations, and human protein-based media that allow similar levels of ex vivo erythroid expansion from adult and cord blood MNC, paving the way to evaluate adult blood as a source of ex vivo-expanded erythroblasts for transfusion. Copyright © 2010 Cognizant Comm. Corp. Source


Migliaccio A.R.,Mount Sinai School of Medicine | Ghinassi B.,Mount Sinai School of Medicine | Ferro L.,Sloan Kettering Cancer Center | Masiello F.,Cell Biology and Neuroscience | And 7 more authors.
Stem Cells International | Year: 2011

Ex vivo expanded erythroblasts (EBs) may serve as advanced transfusion products provided that lodgment occurs in the macrophage-niche of the marrow permitting maturation. EBs expanded from adult and cord blood expressed the receptors (CXCR4, VLA-4, and P-selectin ligand 1) necessary for interaction with macrophages. However, 4-days following transfusion to intact NOD/SCID/IL2R null mice, CD 235 a p o s EBs were observed inside CD 235 a n e g splenic cells suggesting that they underwent phagocytosis. When splenectomized and intact NOD/SCID/IL2R null mice were transfused using retrovirally labeled human EBs, human cells were visualized by bioluminescence imaging only in splenectomized animals. Four days after injection, human CD 235 a p o s cells were detected in marrow and liver of splenectomized mice but only in spleen of controls. Human CD 235 a p o s erythrocytes in blood remained low in all cases. These studies establish splenectomized NOD/SCID/IL2R null mice as a suitable model for tracking and quantification of human EBs in vivo. © 2011 Barbara Ghinassi et al. Source


Migliaccio G.,Cell Biology and Neuroscience | Masiello F.,Cell Biology and Neuroscience | Tirelli V.,Cell Biology and Neuroscience | Sanchez M.,Cell Biology and Neuroscience | And 4 more authors.
Blood Cells, Molecules, and Diseases | Year: 2011

The number of erythroblasts generated ex-vivo under human-erythroid massive-amplification conditions by mononuclear cells from one unit of adult blood (~10 10) are insufficient for transfusion (~10 12 red cells), emphasizing the need for studies to characterize cellular interactions during culture to increase erythroblast production. To identify the cell populations which generate erythroblasts under human-erythroid-massive-amplification conditions and the factors that limit proliferation, day 10 non-erythroblasts and immature- and mature-erythroblasts were separated by sorting, labelled with carboxyfluorescein-diacetate-succinimidyl-ester and re-cultured either under these conditions (for proliferation, maturation and/or apoptosis/autophagy determinations) or in semisolid media (for progenitor cell determination). Non-erythroblasts contained 54% of the progenitor cells but did not grow under human-erythroid-massive-amplification conditions. Immature-erythroblasts contained 25% of the progenitor cells and generated erythroblasts under human-erythroid-massive-amplification conditions (FI at 48h=2.57±1.15). Mature-erythroblasts did not generate colonies and died in human-erythroid-massive-amplification conditions. In sequential sorting/re-culture experiments, immature-erythroblasts retained the ability to generate erythroblasts for 6days and generated 2-5-fold more cells than the corresponding unfractionated population, suggesting that mature-erythroblasts may limit erythroblast expansion. In co-cultures of carboxyfluorescein-diacetate-succinimidyl-ester-labelled-immature-erythroblasts with mature-erythroblasts at increasing ratios, cell numbers did not increase and proliferation, maturation and apoptotic rates were unchanged. However, Acridine Orange staining (a marker for autophagic death) increased from ~3.2% in cultures with immature-erythroblasts alone to 14-22% in cultures of mature-erythroblasts with and without immature-erythroblasts. In conclusion, these data identify immature-erythroblasts as the cells that generate additional erythroblasts in human-erythroid-massive-amplification cultures and autophagy as the leading cause of death limiting the final cellular output of these cultures. © 2011 Elsevier Inc. Source

Discover hidden collaborations