Celica Biomedical Center

Ljubljana, Slovenia

Celica Biomedical Center

Ljubljana, Slovenia
Time filter
Source Type

Calejo A.I.,University of Aveiro | Calejo A.I.,University of Ljubljana | Jorgacevski J.,University of Ljubljana | Jorgacevski J.,Celica Biomedical Center | And 7 more authors.
Journal of Neuroscience | Year: 2013

Regulated exocytosis mediates the release of hormones and transmitters. The last step of this process is represented by the merger between the vesicle and the plasma membranes, and the formation of a fusion pore. Once formed, the initially stable and narrow fusion pore may reversibly widen (transient exocytosis) or fully open (full-fusion exocytosis). Exocytosis is typically triggered by an elevation in cytosolic calcium activity. However, other second messengers, such as cAMP, have been reported to modulate secretion. The way in which cAMP influences the transitions between different fusion pore states remains unclear. Here, hormone release studies show that prolactin release from isolated rat lactotrophs stimulated by forskolin, an activator of adenylyl cyclases, and by membrane-permeable cAMP analog (dbcAMP), exhibit a biphasic concentration dependency. Although at lower concentrations (2-10 μM forskolin and 2.5-5 mM dbcAMP) these agents stimulate prolactin release, an inhibition is measured at higher concentrations (50 μM forskolin and 10 -15 mM dbcAMP). By using high-resolution capacitance (Cm) measurements, we recorded discrete increases in Cm, which represent elementary exocytic events. An elevation of cAMP leaves the frequency of full-fusion events unchanged while increasing the frequency of transient events. These exhibited a wider fusion pore as measured by increased fusion pore conductance and a prolonged fusion pore dwell time. The probability of observing rhythmic reopening of transient fusion pores was elevated by dbcAMP. In conclusion, cAMP-mediated stabilization of wide fusion pores prevents vesicles from proceeding to the full-fusion stage of exocytosis, which hinders vesicle content discharge at high cAMP concentrations. © 2013 the authors.

Potokar M.,University of Ljubljana | Potokar M.,Celica Biomedical Center | Stenovec M.,University of Ljubljana | Stenovec M.,Celica Biomedical Center | And 8 more authors.
GLIA | Year: 2013

Aquaporin 4 (AQP4) is the predominant water channel in the brain, expressed mainly in astrocytes and involved in water transport in physiologic and pathologic conditions. Besides the classical isoforms M1 (a) and M23 (c), additional ones may be present at the plasma membrane, such as the recently described AQP4b, d, e, and f. Water permeability regulation by AQP4 isoforms may involve several processes, such as channel conformational changes, the extent and arrangement of channels at the plasma membrane, and the dynamics of channel trafficking to/from the plasma membrane. To test whether vesicular trafficking affects the abundance of AQP4 channel at the plasma membrane, we studied the subcellular localization of AQP4 in correlation with vesicle mobility of AQP4e, one of the newly discovered AQP4 isoforms. In cultured rat astrocytes, recombinant AQP4e acquired plasma membrane localization, which resembled that of the antibody labeled endogenous AQP4 localization. Under conditions mimicking reactivation of astrocytes (increase in cytosolic cAMP) and brain edema, an increase in the AQP4 plasma membrane localization was observed. The cytoskeleton remained unaffected with the exception of rearranged actin filaments in the model of reactive astrocytes and vimentin meshwork depolymerization in hypoosmotic conditions. AQP4e vesicle mobility correlated with changes in the plasma membrane localization of AQP4 in all stimulated conditions. Hypoosmotic stimulation triggered a transient reduction in AQP4e vesicle mobility mirrored by the transient changes in AQP4 plasma membrane localization. We suggest that regulation of AQP4 surface expression in pathologic conditions is associated with the mobility of AQP4-carrying vesicles. © 2013 Wiley Periodicals, Inc.

Potokar M.,University of Ljubljana | Potokar M.,Celica Biomedical Center | Lacovich V.,Celica Biomedical Center | Chowdhury H.H.,University of Ljubljana | And 5 more authors.
GLIA | Year: 2012

Rab4 and Rab5 GTPases are key players in the regulation of endocytosis. Although their role has been studied intensively in the past, it is still unclear how they regulate vesicle mobility. In particular, in astrocytes, the most abundant glial cells in the brain, vesicles have been shown to exhibit nondirectional and directional mobility, which can be intermittent, but the underlying switching mechanisms are not known. By using quantitative imaging, we studied the dynamics of single vesicle movements in astrocytes in real time, by transfecting them with different GDP- and GTP-locked mutants of Rab4 and Rab5. Along with the localization of Rab4 and Rab5 on early and late endocytic compartments, we measured the apparent vesicle size by monitoring the area of fluorescent puncta and determined the patterns of vesicle mobility in the presence of wild-type and Rab mutants. Dominant-negative and dominant-positive mutants, Rab4 S22N, Rab5 S34N and Rab4 Q67L, Rab5 Q79L, induced an increase in the apparent vesicle size, especially Rab5 mutants. These mutants also significantly reduced vesicle mobility in terms of vesicle track length, maximal displacement, and speed. In addition, significant reductions in the fraction of vesicles exhibiting directional mobility were observed in cells expressing Rab4 S22N, Rab4 Q67L, Rab5 S34N, and Rab5 Q79L. Our data indicate that changes in the GDP-GTP switch apparently not only affect fusion events in endocytosis and recycling, as already proposed, but also affect the molecular interactions determining directional vesicle mobility, likely involving motor proteins and the cytoskeleton. © 2012 Wiley Periodicals, Inc.

Prebil M.,University of Ljubljana | Vardjan N.,University of Ljubljana | Vardjan N.,Celica Biomedical Center | Jensen J.,Norwegian School of Sport Sciences | And 4 more authors.
GLIA | Year: 2011

It is becoming increasingly clear that astrocytes are no longer playing a subservient role to neurons in the central nervous system (CNS), and that these cells are being considered as active communication integrators. They respond to neurotransmitters by the regulated release of gliotransmitters. The delay between neurotransmitter activation and the release of gliotransmitters from astrocytes is in the time-domain of subseconds, much slower than the submillisecond synaptic delay. Astrocytes also control microcirculation and provide metabolic support for neurons. However, the dynamics of their energy metabolic response to neurotransmitter application is not known. We here used a FRET glucose nanosensor to dynamically measure the cytosolic glucose concentration in single astrocytes. We show that following the adrenaline or noradrenaline stimulation the availability of cytosolic glucose is increased promptly after stimulation with a time-constant of 116.7 s and 115.9 s, respectively. A decline in cytosolic glucose concentration with a time-constant of 50.7 s was observed during glutamate and 16.7 s during lactate addition to astrocytes, when these were bathed in the presence of extracellular glucose-containing solution, likely reflecting predominant glucose engagement in glycogen synthesis. In contrast, in the glucose-free extracellular solution, glutamate application to astrocytes resulted in a slow increase in cytosolic glucose concentration, consistent with the view that glutamate may be an alternative energy source in hypoglycemic conditions. We conclude that astrocytic cytosolic glucose metabolism responds in the time-domain of tens of seconds, which is slower compared to the whole brain functional magnetic resonance imaging measurements of the local intravascular hemodynamic response. © 2011 Wiley-Liss, Inc.

Vardjan N.,Celica Biomedical Center | Vardjan N.,University of Ljubljana | Kreft M.,Celica Biomedical Center | Kreft M.,University of Ljubljana | And 2 more authors.
GLIA | Year: 2014

The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. β-Adrenergic receptors (β-AR), which increase cytosolic cAMP concentration ([cAMP]i), may affect cell morphology. However, the real-time dynamics of β-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of β-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of β-AR, rapidly increased [cAMP]i (~15 s). The FRET signal response, mediated via β-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon β-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i. The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, β-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease. © 2014 Wiley Periodicals, Inc.

Rituper B.,University of Ljubljana | Flasker A.,University of Ljubljana | Gucek A.,University of Ljubljana | Chowdhury H.H.,University of Ljubljana | And 4 more authors.
Cell Calcium | Year: 2012

Since the 1970s, much effort was been expended researching mechanisms of regulated exocytosis. Early work focused mainly on the role of proteins. Most notably the discovery of SNARE proteins in the 1980s and the zippering hypothesis brought us much closer to understanding the complex interactions in membrane fusion between vesicle and plasma membranes, a pivotal component of regulated exocytosis. However, most likely due to the predictions of the Singer-Nicholson fluid mosaic membrane model, the lipid components of the exocytotic machinery remained largely overlooked. Lipids were considered passive constituents of cellular membranes, not contributing much, if anything, to the process of exocytosis and membrane fusion. Since the 1990s, this so-called proteocentric view has been gradually giving way to the new perspective best described with the term proteolipidic. Many lipids were found to be of great importance in the regulation of exocytosis. Here we highlight the role of cholesterol. Furthermore, by using high-resolution cell-attached membrane capacitance measurements, we have monitored unitary exocytotic events in cholesterol-depleted membranes. We show that the frequency of these events is attenuated, providing evidence at the single vesicle level that cholesterol directly influences the merger of the vesicle and the plasma membranes. © 2012 Elsevier Ltd.

Gucek A.,University of Ljubljana | Vardjan N.,University of Ljubljana | Vardjan N.,Celica Biomedical Center | Zorec R.,University of Ljubljana | And 2 more authors.
Neurochemical Research | Year: 2012

Astrocytes, a type of glial cells in the brain, are eukaryotic cells, and a hallmark of these are subcellular organelles, such as secretory vesicles. In neurons vesicles play a key role in signaling. Upon a stimulus-an increase in cytosolic concentration of free Ca2+ ([Ca2+] i)-the membrane of vesicle fuses with the presynaptic plasma membrane, allowing the exit of neurotransmitters into the extracellular space and their diffusion to the postsynaptic receptors. For decades it was thought that such vesiclebased mechanisms of gliotransmitter release were not present in astrocytes. However, in the last 30 years experimental evidence showed that astrocytes are endowed with mechanisms for vesicle- and non-vesicle-βased gliotransmitter release mechanisms. The aim of this review is to focus on exocytosis, which may play a role in gliotransmission and also in other forms of cell-to-cell communication, such as the delivery of transporters, ion channels and antigen presenting molecules to the cell surface. © Springer Science+Business Media, LLC 2012.

Kreft M.,University of Ljubljana | Kreft M.,Celica Biomedical Center | Luksic M.,University of Ljubljana | Zorec T.M.,University of Ljubljana | And 3 more authors.
Cellular and Molecular Life Sciences | Year: 2013

Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the d-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (D app) of (2.38 ± 0.41) × 10-10 m2 s-1 (at 22-24 C). Considering that the diffusion coefficient of d-glucose in water is D = 6.7 × 10-10 m2 s-1 (at 24 C), D app determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of D app for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood-brain barrier to neurons and neighboring astrocytes. © 2012 Springer Basel.

Vardjan N.,Celica Biomedical Center | Vardjan N.,University of Ljubljana | Jorgacevski J.,Celica Biomedical Center | Jorgacevski J.,University of Ljubljana | And 2 more authors.
Neuroscientist | Year: 2013

Exocytosis is a multistage process involving a merger between the vesicle and the plasma membranes, leading to the formation of a fusion pore, a channel, through which secretions are released from the vesicle to the cell exterior. A stimulus may influence the pore by either dilating it completely (full-fusion exocytosis) or mediating a reversible closure (transient exocytosis). In neurons, these transitions are short-lived and not accessible for experimentation. However, in some neuroendocrine cells, initial fusion pores may reopen several hundred times, indicating their stability. Moreover, these pores are too narrow to pass luminal molecules to the extracellular space, termed release-unproductive. However, on stimulation, their diameter dilates, initiating the release of cargo without de novo fusion pore formation. To explain the stability of the initial narrow fusion pores, anisotropic membrane constituents with non-axisymmetrical shape were proposed to accumulate in the fusion pore membrane. Although the nature of these is unclear, they may consist of lipids and proteins, including SNAREs, which may facilitate and regulate the pre- and post-fusional stages of exocytosis. In the future, a more detailed insight into the molecular control of fusion pore stabilization and regulation will generate a better understanding of fusion pore physiology in health and disease. © The Author(s) 2012.

Rituper B.,Institute of Pathophysiology | Gucek A.,Institute of Pathophysiology | Jorgacevski J.,Institute of Pathophysiology | Jorgacevski J.,Celica Biomedical Center | And 5 more authors.
Nature Protocols | Year: 2013

In order to understand exocytosis and endocytosis, it is necessary to study these processes directly. An elegant way to do this is by measuring plasma membrane capacitance (Cm), a parameter proportional to cell surface area, the fluctuations of which are due to fusion and fission of secretory and other vesicles. Here we describe protocols that enable high-resolution C m measurements in macroscopic and microscopic modes. Macroscopic mode, performed in whole-cell configuration, is used for measuring bulk C m changes in the entire membrane area, and it enables the introduction of exocytosis stimulators or inhibitors into the cytosol through the patch pipette. Microscopic mode, performed in cell-attached configuration, enables measurements of Cm with attofarad resolution and allows characterization of fusion pore properties. Although we usually apply these protocols to primary pituitary cells and astrocytes, they can be adapted and used for other cell types. After initial hardware setup and culture preparation, several Cm measurements can be performed daily. © 2013 Nature America, Inc. All rights reserved.

Loading Celica Biomedical Center collaborators
Loading Celica Biomedical Center collaborators