Time filter

Source Type

Ljubljana, Slovenia

Vardjan N.,Celica Biomedical | Vardjan N.,University of Ljubljana | Zorec R.,Celica Biomedical | Zorec R.,University of Ljubljana
Neurochemical Research | Year: 2015

During neural activity, neurotransmitters released at synapses reach neighbouring cells, such as astrocytes. These get excited via numerous mechanisms, including the G protein coupled receptors that regulate the cytosolic concentration of second messengers, such as Ca2+ and cAMP. The stimulation of these pathways leads to feedback modulation of neuronal activity and the activity of other cells by the release of diverse substances, gliosignals that include classical neurotransmitters such as glutamate, ATP, or neuropeptides. Gliosignal molecules are released from astrocytes through several distinct molecular mechanisms, for example, by diffusion through membrane channels, by translocation via plasmalemmal transporters, or by vesicular exocytosis. Vesicular release regulated by a stimulus-mediated increase in cytosolic second messengers involves a SNARE-dependent merger of the vesicle membrane with the plasmalemma. The coupling between the stimulus and vesicular secretion of gliosignals in astrocytes is not as tight as in neurones. This is considered an adaptation to regulate homeostatic processes in a slow time domain as is the case in the endocrine system (slower than the nervous system), hence glial functions constitute the gliocrine system. This article provides an overview of the mechanisms of excitability, involving Ca2+ and cAMP, where the former mediates phasic signalling and the latter tonic signalling. The molecular, anatomic, and physiologic properties of the vesicular apparatus mediating the release of gliosignals is presented. © 2015, Springer Science+Business Media New York. Source

Vardjan N.,Celica Biomedical | Vardjan N.,University of Ljubljana | Verkhratsky A.,Celica Biomedical | Verkhratsky A.,University of Ljubljana | And 4 more authors.
Cell Transplantation | Year: 2015

Vesicles are small intracellular organelles that are fundamental for constitutive housekeeping of the plasmalemma, intercellular transport, and cell-to-cell communications. In astroglial cells, traffic of vesicles is associated with cell morphology, which determines the signaling potential and metabolic support for neighboring cells, including when these cells are considered to be used for cell transplantations or for regulating neurogenesis. Moreover, vesicles are used in astrocytes for the release of vesicle-laden chemical messengers. Here we review the properties of membrane-bound vesicles that store gliotransmitters, endolysosomes that are involved in the traffic of plasma membrane receptors, and membrane transporters. These vesicles are all linked to pathological states, including amyotrophic lateral sclerosis, multiple sclerosis, neuroinflammation, trauma, edema, and states in which astrocytes contribute to developmental disorders. In multiple sclerosis, for example, fingolimod, a recently introduced drug, apparently affects vesicle traffic and gliotransmitter release from astrocytes, indicating that this process may well be used as a new pathophysiologic target for the development of new therapies. © 2015 Cognizant Comm. Corp. Source

Discover hidden collaborations