Entity

Time filter

Source Type


Jarvas G.,CEITEC Central European Institute of Technology | Jarvas G.,University of Pannonia | Guttman A.,University of Pannonia | Foret F.,CEITEC Central European Institute of Technology | Foret F.,Academy of Sciences of the Czech Republic
Mass Spectrometry Reviews | Year: 2015

Capillary electrophoresis hyphenated with electrospray mass spectrometry (CE-ESI-MS) has emerged in the past decade as one of the most powerful bioanalytical techniques. As the sensitivity and efficiency of new CE-ESI-MS interface designs are continuously improving, numerical modeling can play important role during their development. In this review, different aspects of computer modeling and simulation of CE-ESI-MS interfaces are comprehensively discussed. Relevant essentials of hydrodynamics as well as state-of-the-Art modeling techniques are critically evaluated. Sheath liquid-, sheathless-, and liquid-junction interfaces are reviewed from the viewpoint of multidisciplinary numerical modeling along with details of single and multiphase models together with electric field mediated flows, electrohydrodynamics, and free fluid-surface methods. Practical examples are given to help non-specialists to understand the basic principles and applications. Finally, alternative approaches like air amplifiers are also included. © 2014 Wiley Periodicals, Inc. Source


Krepl M.,Academy of Sciences of the Czech Republic | Otyepka M.,Palacky University | Banas P.,Academy of Sciences of the Czech Republic | Banas P.,Palacky University | And 2 more authors.
Journal of Physical Chemistry B | Year: 2013

Guanine to inosine (G → I) substitution has often been used to study various properties of nucleic acids. Inosine differs from guanine only by loss of the N2 amino group, while both bases have similar electrostatic potentials. Therefore, G → I substitution appears to be optimally suited to probe structural and thermodynamics effects of single H-bonds and atomic groups. However, recent experiments have revealed substantial difference in free energy impact of G → I substitution in the context of B-DNA and A-RNA canonical helices, suggesting that the free energy changes reflect context-dependent balance of energy contributions rather than intrinsic strength of a single H-bond. In the present study, we complement the experiments by free energy computations using thermodynamics integration method based on extended explicit solvent molecular dynamics simulations. The computations successfully reproduce the basic qualitative difference in free energy impact of G → I substitution in B-DNA and A-RNA helices although the magnitude of the effect is somewhat underestimated. The computations, however, do not reproduce the salt dependence of the free energy changes. We tentatively suggest that the different effect of G → I substitution in A-RNA and B-DNA may be related to different topologies of these helices, which affect the electrostatic interactions between the base pairs and the negatively charged backbone. Limitations of the computations are briefly discussed. © 2013 American Chemical Society. Source


Hernandez-Hernandez V.,National Autonomous University of Mexico | Niklas K.J.,Cornell University | Newman S.A.,New York Medical College | Benitez M.,National Autonomous University of Mexico | Benitez M.,CEITEC Central European Institute of Technology
International Journal of Developmental Biology | Year: 2012

Broad comparative studies at the level of developmental processes are necessary to fully understand the evolution of development and phenotypes. The concept of dynamical patterning modules (DPMs) provides a framework for studying developmental processes in the context of wide comparative analyses. DPMs are defined as sets of ancient, conserved gene products and molecular networks, in conjunction with the physical morphogenetic and patterning processes they mobilize in the context of multicellularity. The theoretical framework based on DPMs originally postulated that each module generates a key morphological motif of the basic animal body plans and organ forms. Here, we use a previous definition of the plant multicellular body plan and describe the basic DPMs underlying the main features of plant development. For each DPM, we identify characteristic molecules and molecular networks, and when possible, the physical processes they mobilize. We then briefly review the phyletic distribution of these molecules across the various plant lineages. Although many of the basic plant DPMs are significantly different from those of animals, the framework established by a DPM perspective on plant development is essential for comparative analyses aiming to provide a truly mechanistic explanation for organic development across all plant and animal lineages. © 2012 UBC Press. Source


Drsata T.,Czech Institute of Organic Chemistry And Biochemistry | Drsata T.,Academy of Sciences of the Czech Republic | Spackova N.,Academy of Sciences of the Czech Republic | Jurecka P.,Palacky University | And 4 more authors.
Nucleic Acids Research | Year: 2014

A-tracts are functionally important DNA sequences which induce helix bending and have peculiar structural properties. While A-tract structure has been qualitatively well characterized, their mechanical properties remain controversial. A-tracts appear structurally rigid and resist nucleosome formation, but seem flexible in DNA looping. In this work, we investigate mechanical properties of symmetric AnTn and asymmetric A2n tracts for n = 3, 4, 5 using two types of coarse-grained models. The first model represents DNA as an ensemble of interacting rigid bases with non-local quadratic deformation energy, the second one treats DNA as an anisotropically bendable and twistable elastic rod. Parameters for both models are inferred from microsecond long, atomic-resolution molecular dynamics simulations. We find that asymmetric A-tracts are more rigid than the control G/C-rich sequence in localized distortions relevant for nucleosome formation, but are more flexible in global bending and twisting relevant for looping. The symmetric tracts, in contrast, are more rigid than asymmetric tracts and the control, both locally and globally. Our results can reconcile the contradictory stiffness data on A-tracts and suggest symmetric A-tracts to be more efficient in nucleosome exclusion than the asymmetric ones. This would open a new possibility of gene expression manipulation using A-tracts. © 2014 The Author(s) 2014. Source


Kuhrova P.,Palacky University | Otyepka M.,Palacky University | Otyepka M.,Academy of Sciences of the Czech Republic | Sponer J.,Academy of Sciences of the Czech Republic | And 3 more authors.
Journal of Chemical Theory and Computation | Year: 2014

Hydrating water molecules are believed to be an inherent part of the RNA structure and have a considerable impact on RNA conformation. However, the magnitude and mechanism of the interplay between water molecules and the RNA structure are still poorly understood. In principle, such hydration effects can be studied by molecular dynamics (MD) simulations. In our recent MD studies, we observed that the choice of water model has a visible impact on the predicted structure and structural dynamics of RNA and, in particular, has a larger effect than type, parametrization, and concentration of the ions. Furthermore, the water model effect is sequence dependent and modulates the sequence dependence of A-RNA helical parameters. Clearly, the sensitivity of A-RNA structural dynamics to the water model parametrization is a rather spurious effect that complicates MD studies of RNA molecules. These results nevertheless suggest that the sequence dependence of the A-RNA structure, usually attributed to base stacking, might be driven by the structural dynamics of specific hydration. Here, we present a systematic MD study that aimed to (i) clarify the atomistic mechanism of the water model sensitivity and (ii) discover whether and to what extent specific hydration modulates the A-RNA structural variability. We carried out an extended set of MD simulations of canonical A-RNA duplexes with TIP3P, TIP4P/2005, TIP5P, and SPC/E explicit water models and found that different water models provided a different extent of water bridging between 2′-OH groups across the minor groove, which in turn influences their distance and consequently also inclination, roll, and slide parameters. Minor groove hydration is also responsible for the sequence dependence of these helical parameters. Our simulations suggest that TIP5P is not optimal for RNA simulations. © 2013 American Chemical Society. Source

Discover hidden collaborations