Time filter

Source Type

Izhar,CECOS University of IT and Emerging Sciences | Khan F.U.,University of Peshawar
2016 International Conference on Intelligent Systems Engineering, ICISE 2016 | Year: 2016

Helmholtz resonator (HR) is the key element of acoustic energy harvesting devices. It is used to augment or attenuate the incoming acoustic wave. In acoustic energy harvesters the objective of HR is to augment the incoming acoustic wave. In this work an improved architecture of HR is proposed for acoustic energy harvesting devices. Modeling and simulation of the HR is reported. The HR is modeled as one degree of freedom system. The proposed HR has a high pressure gain as compared to the HR used in previously developed acoustic energy harvesting devices. The proposed design for HR results in high acoustic stiffness of the air entrapped inside the Helmholtz cavity that ultimately improves the pressure gain of the HR. Moreover, for similar dimensions the resonant frequency of the proposed HR is 1693 Hz, while resonant frequency of the reported HRs is 1119.7 Hz. Furthermore, at resonance the pressure gain of the proposed HR is 56.5 dB which is quite high than the pressure gain of the reported HRs with cylindrical shape cavities that is 52.7 dB. © 2016 IEEE.

Ahmad R.,University of Luxembourg | Ahmad R.,CECOS University of IT and Emerging Sciences | Plapper P.,University of Luxembourg
CIRP Journal of Manufacturing Science and Technology | Year: 2015

The complexity of multi-axis, milling and drilling CNC machines and the demand of high precision for complex parts production increase the importance of safe and efficient tool-paths generation during manufacturing. In these machines, multi-tool working in the same area, or static un-programed machine elements, such as fixtures, another work-part may cause collision problems. It is important to know the collision risks in advance during production in order to avoid unexpected production stops, and machinery damage. This research study is focusing on automatic collision detection and avoidance for safe non-functional (rapid) tool-path generation in a static 2.5D milling or drilling machining environment, as an initial step toward complex, dynamic multi-axis machine-tool manufacturing. A 3D vision based Time of Flight (ToF) sensor provides the depth information about the manufacturing scene that are exploited by the method presented for taking an effective decision to automatically detect and avoid collisions in order to achieve safe tool-path during production. The concept presented opens up new areas for research and application of ToF camera in a CNC manufacturing environment for tool-path planning. The results obtained are for traversal safe tool-paths in a static environment, which will be adapted to more complex and dynamic real machining scenarios by integrating it with STEP-NC technology in future. © 2015 CIRP.

Ahmad R.,University of Luxembourg | Ahmad R.,CECOS University of IT and Emerging Sciences | Plapper P.,University of Luxembourg
MATEC Web of Conferences | Year: 2016

Safe and optimal path planning in a cluttered changing environment for agents' movement is an area of research, which needs further investigations. The existing methods are able to generated secure trajectories, but they are not efficient enough to learn from their mistakes, especially when dynamics of the environment are concerned. This paper presents an advanced version of the Ant-Air algorithm, which can detect the changed scenario and while keeping the lessons learnt from the previously planned safe trajectory, it then generates a safe and optimal path by avoiding collisions with the obstacles. The method presented can learn from the experience and hence improve the already generated trajectories further by using the lessons learned from the experience. The concept developed is applicable in various domains such as path planning for mobile robot, industrial robots, and simulation of part movement in narrow passages. © 2016 Owned by the authors, published by EDP Sciences.

Zafar M.S.,Taibah University | Ahmed N.,CECOS University of IT and Emerging Sciences
Fluoride | Year: 2015

Because topical fluoride is considered to be beneficial for oral health, fluoride release and recharge features have been added to various restorative dental materials. These materials act as a rechargeable reservoir that can release fluoride, be recharged with fluoride, and then re-release fluoride, thus ensuring the availability of fluoride over a longer period of time. The ability of these materials to deliver the optimal concentration of fluoride required for various therapeutic actions for dental health has resulted in their popularity. This paper reviews the fluoride releasing materials and the therapeutic effects of the released fluoride. © 2015, The International Society for Fluoride Research Inc.

Khan R.,Queens University of Belfast | Khan S.U.,CECOS University of IT and Emerging Sciences
Procedia Computer Science | Year: 2016

Several studies in the past have revealed that network end user devices are left powered up 24/7 even when idle just for the sake of maintaining Internet connectivity. Network devices normally support low power states but are kept inactive due to their inability to maintain network connectivity. The Network Connectivity Proxy (NCP) has recently been proposed as an effective mechanism to impersonate network connectivity on behalf of high power devices and enable them to sleep when idle without losing network presence. The NCP can efficiently proxy basic networking protocol, however, proxying of Internet based applications have no absolute solution due to dynamic and non-predictable nature of the packets they are sending and receiving periodically. This paper proposes an approach for proxying Internet based applications and presents the basic software architectures and capabilities. Further, this paper also practically evaluates the proposed framework and analyzes expected energy savings achievable under- different realistic conditions. © 2016 The Authors.

Discover hidden collaborations