Time filter

Source Type

Ventura, CA, United States

Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat with a CuMn stoichiometric spinel structure and an overcoat that includes PGM, such as palladium (Pd) supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed SPGM catalyst system also exhibits enhanced catalytic activity for carbon monoxide conversion. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalytic activity for fresh and aged conditions compared to PGM catalyst system, showing that there is a synergistic effect between PGM catalyst and CuMn spinel within the disclosed SPGM catalyst system which help in thermal stability of disclosed SPGM catalyst.

A diesel oxidation catalyst (DOC) system for the treatment of exhaust gas emissions, including oxidation of nitrogen oxides (NO), unburned hydrocarbons (HC), and carbon monoxide (CO) is disclosed. Fresh and hydrothermally aged Zero-PGM (ZPGM) DOC samples are prepared and configured with an alumina-based washcoat on ceramic substrate, overcoat including doped Zirconia support oxide, and impregnation layer of CuMn spinel of selected base metal loadings. Testing of fresh and hydrothermally aged ZPGM DOC system samples including CuMn spinel is developed to evaluate the performance of CuMn spinel active phase in oxidation CO, HC, and NO, as well as production of NO

Synergized platinum group metals (SPGM) oxidation catalyst systems are disclosed. Disclosed SPGM oxidation catalyst systems may include a washcoat with a CuMn spinel structure and an overcoat including PGM, such as palladium (Pd), platinum (Pt), rhodium (Rh), or combinations thereof, supported on carrier material oxides. SPGM systems show significant improvement in abatement of unburned hydrocarbons (HC) and carbon monoxide (CO), and the oxidation of NO to NO

Cdti | Date: 2013-08-19

The present disclosure relates to an enhanced oxygen storage material (OSM) that may be converted into powder form and used as a raw material for a vast number of applications, and more particularly in catalyst systems. The disclosed OSM, substantially free from PGM and rare earth (RE) metals, has significantly higher oxygen storage capacity (OSC) than conventional OSM including PGM and RE metals. The disclosed OSM may be converted into powder, including a formulation of CuMn spinel structure deposited on NbZr oxide support. The disclosed OSM may also be coated onto a ceramic substrate as washcoat layer for characterization under OSC isothermal oscillating condition. The disclosed OSM may have an optimal OSC property that increases with the temperature, showing acceptable level of O

The influence of a plurality of support oxides on coating process for ZPGM catalysts is disclosed. ZPGM catalyst samples with washcoat on suitable ceramic substrate and overcoat including a plurality of support oxides are prepared including an impregnation layer of CuMn spinel or overcoat may be prepared from powder of CuMn spinel with support oxide. Testing of fresh and aged ZPGM catalyst samples is developed under isothermal steady state sweep test condition. Catalyst testing allows to determine effect of a plurality of support oxides on coating processes, TWC performance, and stability of ZPGM catalysts for a plurality of TWC applications. Stability of ZPGM-TWC systems may be improved by promotion of the activity of ZPGM materials incorporating support oxides. Improvements that may be provided by the combination of support oxides with ZPGM materials in the catalyst may lead to a most effective utilization of ZPGM materials in TWC converters.

Discover hidden collaborations