Time filter

Source Type

Nagiah N.,CSIR - Central Leather Research Institute | Madhavi L.,CavinKare Research Center Ekkattuthangal | Anitha R.,CavinKare Research Center Ekkattuthangal | Srinivasan N.T.,Indian Institute of Technology Madras | Sivagnanam U.T.,CSIR - Central Leather Research Institute
Polymer Bulletin | Year: 2013

A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were electrospun using 1,1,1,3,3,3 hexafluoro-2-propanol as solvent. Cross linking of fibers was achieved using glutaraldehyde, and the resultant fibers were tested and analyzed using scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy (FTIR).The fibers were found to exhibit good tensile strength. Degradation studies were performed and analyzed using SEM and FTIR and proved the stability of fibers for tissue engineering applications. The fibrous scaffold supported the growth and rapid proliferation of human dermal fibroblasts and keratinocytes with normal morphology, thus proving its reliability in using it as a potential scaffold for skin regeneration. © 2013 Springer-Verlag Berlin Heidelberg.

Loading CavinKare Research Center Ekkattuthangal collaborators
Loading CavinKare Research Center Ekkattuthangal collaborators