Catholic University ore Rome

San Vito sullo Ionio, Italy

Catholic University ore Rome

San Vito sullo Ionio, Italy
SEARCH FILTERS
Time filter
Source Type

Podda M.V.,Catholic University ore Rome | Riccardi E.,Catholic University ore Rome | D'Ascenzo M.,Catholic University ore Rome | Azzena G.B.,Catholic University ore Rome | Grassi C.,Catholic University ore Rome
Neuroscience | Year: 2010

Dopamine/cAMP signaling has been reported to mediate behavioral responses related to drug addiction. It also modulates the plasticity and firing properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc), although the effects of cAMP signaling on the resting membrane potential (RMP) of MSNs has not been specifically defined. In this study, activation of dopamine D1-like receptors (D1Rs) by SKF-38393 elicited membrane depolarization and inward currents in MSNs from the NAc core of 14-17 day-old mice. Similar results were obtained following stimulation of adenylyl cyclase (AC) activity with forskolin or application of exogenous cAMP. Forskolin occluded SKF-38393's effects, thus indicating that D1R action is mediated by AC/cAMP signaling. Accordingly, AC blockade by SQ22536 significantly inhibited the responses to SKF-38393. Effects elicited by D1R stimulation or increased cAMP levels were unaffected by protein kinase A (PKA) or protein kinase C (PKC) blockade and were not mimicked by the Epac agonist, 8CPT-2Me-cAMP. Responses to forskolin were also not significantly modified by cyclic nucleotide-gated (CNG) channel blockade. Forskolin-induced membrane depolarization was associated with increased membrane input resistance. Voltage-clamp experiments revealed that forskolin and SKF-38393 effects were due to inhibition of resting K+ currents exhibiting inward rectification at hyperpolarized potentials and a reversal potential (around -90 mV) that shifted with the extracellular K+ concentration. Forskolin and D1R agonist effects were abolished by the inward rectifier K+ (Kir)-channel blocker, BaCl2. Collectively, these data suggest that stimulation of postsynaptic D1Rs in MSNs of the NAc core causes membrane depolarization by inhibiting Kir currents. This effect is mediated by AC/cAMP signaling but it is independent on PKA, PKC, Epac and CNG channel activation, suggesting that it may stem from cAMP's direct interaction with Kir channels. D1R/cAMP-mediated excitatory effects may influence the generation of output signals from MSNs by facilitating their transition from the quiescent down-state to the functionally active up-state. © 2010 IBRO.

Loading Catholic University ore Rome collaborators
Loading Catholic University ore Rome collaborators