Entity

Time filter

Source Type

Lublin, Poland

Catholic University of Lublin is located in Lublin, Poland. Presently it has an enrollment of over 19,000 students. It has eight faculties: Theology, Philosophy, Law, Canon Law and Administration, Social science, Mathematics and Natural science, Humanities, Legal and Economic science in Tomaszów Lubelski, Social science in Stalowa Wola. It is the only private college in Poland with the status of a "university." Wikipedia.


Jankowski T.,Catholic University of Lublin | Holas P.,Medical University of Warsaw
Consciousness and Cognition | Year: 2014

Mindfulness training has proven to be an efficacious therapeutic tool for a variety of clinical and nonclinical health problems and a booster of well-being. In this paper we propose a multi-level metacognitive model of mindfulness. We postulate and discuss following hypothesis: (1) mindfulness is related to the highest level of metacognition; (2) mindfulness depends on dynamic cooperation of three main components of the metacognition (metacognitive knowledge, metacognitive experiences and metacognitive skills); (3) a mindful meta-level is always conscious while the other meta-cognitive processes can occur implicitly; (4) intentionally practiced mindfulness decreases dissociations between awareness and meta-awareness; (5) components of mindful meta-level develop and change during continuous practice. The current model is discussed in the light of empirical data and other theoretical approaches to mindfulness concept. We believe that presented model provides some helpful avenues for future research and theoretical investigations into mindfulness and the mechanisms of its actions. © 2014 Elsevier Inc. Source


Golczyk H.,Catholic University of Lublin | Massouh A.,Max Planck Institute of Molecular Plant Physiology | Greiner S.,Max Planck Institute of Molecular Plant Physiology
Plant Cell | Year: 2014

Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. © 2014 American Society of Plant Biologists. All rights reserved. Source


Microcystin-LR (MC-LR) is the main isoform of hepatotoxin produced by cyanobacteria, which occur worldwide in the aquatic environment. The present study investigated the in vitro toxic MC-LR effects on immune cells isolated from the blood of carp. Cells were exposed to different MC-LR concentrations ranging from 0.01 to 1 μg ml-1 for 2, 6 and 24 h. In addition, the effect of the toxin on the phagocytic activity of leukocytes and on actin and tubulin re-organization in phagocytic cells was studied. We observed that MC-LR induces apoptosis in lymphocytes 2 h after incubation, whereas high toxin concentrations induced necrosis in lymphocytes in a time- and concentration-dependent manner. Incubation of the cells for 2 h with 0.1 and 1 μg ml-1 MC-LR inhibited phagocytosis without affecting apoptosis or glutathione (GSH) levels. Moreover, at this time point and with these concentrations, the toxin also induced a significant re-organization of the actin cytoskeleton in phagocytes, which subsequently collapsed around the nucleus leading to cell shrinkage and the disappearance of filopodia. These results suggest that both phagocytes and lymphocytes are targets for MC-LR and the disturbances of phagocytosis may impair the balance of the immune system. © 2012 John Wiley & Sons, Ltd. Source


Stepniewska Z.,Catholic University of Lublin | Kuaniar A.,Catholic University of Lublin
Applied Microbiology and Biotechnology | Year: 2013

Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented. © 2013 The Author(s). Source


The potential of high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) for screening of synthetic cathinones in legal highs was examined. Samples were analysed by liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometer (Q/TOF). Nanoelectrospray ionisation (nanoESI) was employed. MS and MS/MS spectra were acquired. Six 3,4-methylenedioxy derivatives: methylone, butylone, pentylone, MDPBP, MDPV and BMDP were detected and identified. The fragmentation pattern of 3,4-methylenedioxy derivatives in collision induced dissociation (CID) was derived and described, which will facilitate future screenings and identifications of new synthetic cathinones. For 3,4-methylenodioxy derivative cathinones the loss of neutral groups CH4O2, H2O, amines and imines is observed. The loss of water and the methylenedioxy group does not occur when cyclic amino group - pyrrolidynyl is present in the molecule. Phenyloxazole cations are formed when CH4O2 is lost. The formation of the metylenedioxybenzoyloxonium and allyldioxybenzoyloxonium ions is typical for 3,4-methylenodioxy derivatives, however, the formation of the former appears to be inhibited by the presence in the molecule of the group of atoms able to form very stable tropylium carbocation. © 2013 Elsevier B.V. Source

Discover hidden collaborations