Time filter

Source Type

Louvain-la-Neuve, Belgium

The Catholic University of Leuven, , was the largest, oldest and most prominent university in Belgium. The university was founded in 1425 as the University of Leuven by John IV, Duke of Brabant and approved by a Papal bull by Pope Martin V.During France's occupation of Belgium in the French Revolutionary Wars, the French Republic closed the university. After Belgium was annexed by the United Kingdom of the Netherlands, the State University of Louvain was founded in 1816, lasting until 1835. In 1834, a few years after Belgium gained its independence, the university was "re-founded", and would become known as the Catholic University of Leuven, and it is usually identified with the Old University.In 1968, the university split to form two institutions: Katholieke Universiteit Leuven, Dutch-speaking, situated primarily in Leuven; and Université catholique de Louvain, French-speaking, situated primarily in nearby Louvain-la-Neuve.This entry deals with the historic university, 1425–1797 and 1834–1968. For the current successor institutions and their separate development since 1968, see the individual articles linked above. Wikipedia.

Gohy J.-F.,Catholic University of Louvain | Zhao Y.,Universite de Sherbrooke
Chemical Society Reviews

Stimuli-responsive block copolymer micelles are the topic of intense research since they are able to show sharp and eventually reversible responses to various environmental changes and find applications in various fields including controlled drug delivery. Among all the available stimuli, light has recently attracted much attention since it can be localized in time and space, and it can also be triggered from outside of the system. In this tutorial review, we highlight the progress realized in recent years. More precisely, we provide some guidelines towards the rational design of photo-responsive block copolymers and we present the different photo-responsive moieties that have been used so far. We also discuss the different types of irreversible and reversible responses encountered by photo-responsive block copolymer micelles. Finally, we suggest possible future developments including the design of biocompatible systems operating at excitation wavelengths compatible for biomedical applications. © 2013 The Royal Society of Chemistry. Source

Andre G.,Catholic University of Louvain
Nature communications

The spatial organization of peptidoglycan, the major constituent of bacterial cell-walls, is an important, yet still unsolved issue in microbiology. In this paper, we show that the combined use of atomic force microscopy and cell wall mutants is a powerful platform for probing the nanoscale architecture of cell wall peptidoglycan in living Gram-positive bacteria. Using topographic imaging, we found that Lactococcus lactis wild-type cells display a smooth, featureless surface morphology, whereas mutant strains lacking cell wall exopolysaccharides feature 25-nm-wide periodic bands running parallel to the short axis of the cell. In addition, we used single-molecule recognition imaging to show that parallel bands are made of peptidoglycan. Our data, obtained for the first time on living ovococci, argue for an architectural feature of the cell wall in the plane perpendicular to the long axis of the cell. The non-invasive live cell experiments presented here open new avenues for understanding the architecture and assembly of peptidoglycan in Gram-positive bacteria. Source

Catholic University of Louvain | Date: 2013-04-29

According to a first aspect, the invention relates to a thermoelectric module (

Catholic University of Louvain | Date: 2015-07-09

A method of treating liver-based inborn, metabolic deficiencies is disclosed by treatment of an individual, such as a patient suffering from liver-based inborn, metabolic deficiencies, with human progenitor or stem cells, a cell population or their progeny. The cells used in the treatment have the following characteristics. They are positive for vimentin, -smooth muscle actin (ASMA), and for at least one mesenchymal marker such as CD90, CD29, CD73, and CD44. They are positive for at least one hepatocyte marker such as albumin, alpha-fetoprotein, alpha-1 antitrypsin, HNF-4 and MRP2 transporter. They express at least one hepatocyte-like property or function such as G6P, CYP1B1, CYP3A4, TDO, TAT, GS, GGT, CK8, and EAAT2. They are negative for at least one marker such as cytokeratin-19, CD45, CD34, CD49f, CD133, HLA-DR, and CD117. They have mesenchymal-like morphology. They originate from human adult liver cells.

Catholic University of Louvain | Date: 2014-01-10

A method of conducting in vitro toxicity testing is disclosed which includes the steps of exposing to a test agent a population of human liver progenitor or stem cells originated from human adult liver. The cells have the characteristics that the isolated human progenitor or stem cells express at least the mesenchymal markers vimentin and -smooth muscle actin (ASMA), the hepatocyte marker albumin (ALB), are negative for cytokeratin-19 (CK-19), and have mesenchymal-like morphology. One or more effects, if any, of the test agent on the population of human liver progenitor or stem cells are observed. Also disclosed are methods of conducting in vitro drug metabolism studies by exposing to a test agent a population of the human liver progenitor or stem cells and methods of testing infected human liver progenitor or stem cells for effects of a test agent.

Discover hidden collaborations