Time filter

Source Type

Santa Fe de la Vera Cruz, Argentina

Simoniello M.F.,Catedra de Toxicologia | Simoniello M.F.,University of Buenos Aires | Kleinsorge E.C.,Catedra de Toxicologia | Carballo M.A.,University of Buenos Aires
Medicina | Year: 2010

Pesticides are used in agriculture to protect crops but may represent a potential risk to farmers and the environment. The aim of this work was to evaluate horticultural workers exposed to pesticide, categorized by: direct exposure (n = 45), indirect exposure (n = 50) and controls (n = 50) using exposure and effect biomarkers: cholinesterase (ChE), acetylcholinesterase (AChE), catalase (CAT), lipid peroxidation (TBARS), Damage Index Comet Assay (IDEC) and Damage Index Repair Assay (IDER). Our results show: a) an AChE inhibition in directly and indirectly exposed population (p < 0.001), b) significant increase in the levels of TBARS in direct exposure (p < 0.001), c) the CAT reduction was significant (p < 0.01), d) a significant increase in IDEC and IDER in both exposed groups (p < 0.001). Our results evidence variations in oxidative balance and DNA damage in exposed workers. These findings represent a contribution to the sub-clinical evaluation of subjects exposed to agrochemicals in our country.

Poletta G.L.,Catedra de Toxicologia | Poletta G.L.,CONICET | Gigena F.,Catedra de Toxicologia | Loteste A.,Catedra de Toxicologia | And 4 more authors.
Pesticide Biochemistry and Physiology | Year: 2013

Agricultural chemicals can induce genetic alterations on aquatic organisms that have been associated with effects on growth, reproduction and population dynamics. The evaluation of DNA damage in fish using the comet assay (CA) frequently involves the utilization of erythrocytes. However, epithelial gill cells (EGC) can be more sensitive, as they are constantly dividing and in direct contact with potentially stressing compounds from the aquatic environment. The aim of the present study was to evaluate (1) the sensitivity and suitability of epithelial gill cells of Prochilodus lineatus in response to different genotoxic agents through the application of the CA, (2) the induction of DNA damage in this cell population after in vivo exposure to cypermethrin. Baseline value of the CA damage index (DI) for EGC of juvenile P. lineatus was 144.68±5.69. Damage increased in a dose-dependent manner after in vitro exposure of EGC to methyl methanesulfonate (MMS) and H2O2, two known genotoxic agents. In vivo exposure of fish to cypermethrin induced a significant increase in DNA DI of EGC at 0.150μg/l (DI: 239.62±6.21) and 0.300μg/l (270.63±2.09) compared to control (150.25±4.38) but no effect was observed at 0.075μg/l (168.50±10.77). This study shows that EGC of this species are sensitive for the application of the CA, demonstrating DNA damage in response to alkylation (MMS), oxidative damage (H2O2), and to the insecticide cypermethryn. These data, together with our previous study on DNA damage induction on erythrocytes of this species, provides useful information for future work involving biomonitoring in regions where P. lineatus is naturally exposed to pesticides and other genotoxic agents. © 2013 Elsevier Inc.

Discover hidden collaborations