Entity

Time filter

Source Type


Ribeiro J.,University of Porto | Flores D.,University of Porto | Ward C.R.,University of New South Wales | Silva L.F.O.,Catarinense Institute of Environmental Research and Human Development
Science of the Total Environment | Year: 2010

A range of carbon nanoparticles, agglomerates and mineral phases have been identified in burning coal waste pile materials from the Douro Coalfield of Portugal, as a basis for identifying their potential environmental and human health impacts. The fragile nature and fine particle size of these materials required novel characterization methods, including energy-dispersive X-ray spectrometry (EDS), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) techniques. The chemical composition and possible correlations with morphology of the nanominerals and associated ultra-fine particles have been evaluated in the context of human health exposure, as well as in relation to management of such components in coal-fire environments. © 2010 Elsevier B.V. Source


Ribeiro J.,University of Porto | DaBoit K.,Institute of Environmental Research and Human Development | Flores D.,University of Porto | Kronbauer M.A.,Centro Universitario La Salle | And 2 more authors.
Science of the Total Environment | Year: 2013

The generation of anthropogenic carbonaceous matter and mixed crystalline/amorphous mineral ultrafine/nano-particles in the 1 to 100. nm size range by worldwide coal power plants represents serious environmental problems due to their potential hazards. Coal fly ash (CFA) that resulted from anthracite combustion in a Portuguese thermal power plant was studied in this work. The physico-chemical characterization of ultrafine/nano-particles present in the CFA samples and their interaction with environment are the aim of this study. The methodologies applied for this work were field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy with energy dispersive X-ray spectroscopy (HR-TEM/EDS) and time of flight secondary ion mass spectrometry (ToF-SIMS). Some hazardous volatile elements, C, N, S and Hg contents were also determined in the studied samples.Generally, the CFA samples comprise carbonaceous, glassy and metallic solid spheres with some containing mixed amorphous/crystalline phases. The EDS analysis coupled with the FE-SEM and HR-TEM observations of the fly ash particles with 100 to 0.1. nm demonstrates that these materials contain a small but significant proportion of encapsulated HVEs. In addition, the presence of abundant multi-walled carbon nanotubes (MWCNTs) and amorphous carbon particles, both containing hazardous volatile elements (HVEs), was also evidenced by the FE-SEM/EDS and HR-TEM/EDS analysis. A wide range of organic and inorganic compounds was determined by chemical maps obtained in ToF-SIMS analysis. © 2013 Elsevier B.V. Source


Gasparotto J.,Federal University of Rio Grande do Sul | Somensi N.,Federal University of Rio Grande do Sul | Caregnato F.F.,Federal University of Rio Grande do Sul | Rabelo T.K.,Federal University of Rio Grande do Sul | And 4 more authors.
Science of the Total Environment | Year: 2013

Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1. mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1. mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013. Source


Velasquez D.A.,University of Santiago de Compostela | Martinez G.,University of Santiago de Compostela | Romero A.,University of Santiago de Compostela | Vazquez M.J.,University of Santiago de Compostela | And 7 more authors.
Diabetes | Year: 2011

OBJECTIVE - Ghrelin is a stomach-derived peptide that increases food intake through the activation of hypothalamic AMP-activated protein kinase (AMPK). However, the molecular mechanisms initiated by the activation of the ghrelin receptor, which in turn lead to AMPK activation, remain unclear. Sirtuin 1 (SIRT1) is a deacetylase activated in response to calorie restriction that acts through the tumor suppressor gene p53. We tested the hypothesis that the central SIRT1/p53 pathway might be mediating the orexigenic action of ghrelin. RESEARCH DESIGN AND METHODS - SIRT1 inhibitors, such as Ex527 and sirtinol, and AMPK activators, such as AICAR, were administered alongside ghrelin in the brain of rats and mice (wild-type versus p53 knockout [KO]). Their hypothalamic effects on lipid metabolism and changes in transcription factors and neuropeptides were assessed by Western blot and in situ hybridization. RESULTS - The central pretreatment with Ex527, a potent SIRT1 inhibitor, blunted the ghrelin-induced food intake in rats. Mice lacking p53, a target of SIRT1 action, failed to respond to ghrelin in feeding behavior. Ghrelin failed to phosphorylate hypothalamic AMPK when rats were pretreated with Ex527, as it did in p53 KO mice. It is noteworthy that the hypothalamic SIRT1/p53 pathway seems to be specific for mediating the orexigenic action of ghrelin, because central administration of AICAR, a potent AMPK activator, increased food intake in p53 KO mice. Finally, blockade of the central SIRT1 pathway did not modify ghrelin-induced growth hormone secretion. CONCLUSIONS - Ghrelin specifically triggers a central SIRT1/ p53 pathway that is essential for its orexigenic action, but not for the release of growth hormone. © 2011 by the American Diabetes Association. Source


Kronbauer M.A.,Centro Universitario La Salle Mestrado Em Avaliacao Of Impactos Ambientais Em Mineracao | Kronbauer M.A.,Federal University of Rio Grande do Sul | Izquierdo M.,Cranfield University | Dai S.,China University of Mining and Technology | And 9 more authors.
Science of the Total Environment | Year: 2013

The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO3 versus Al2O3 determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates. © 2013 Elsevier B.V.. Source

Discover hidden collaborations