Entity

Time filter

Source Type

Solihull, United Kingdom

Patent
Catapult | Date: 2014-04-02

The present invention relates to chair swivel mechanisms with an automatic return-to-center function when the occupant exits the chair or changes the loading on the chair. The chair swivel of the present invention improves upon existing chair swivels through use of dual thrust bearings to manage repeated and uneven loading of the swivel mechanism in high use environments.


Patent
Catapult | Date: 2013-07-08

An electronically trackable ball consisting of a cover, an inflatable bladder, a valve in the bladder a mounting structure attached to said valve and extending inwardly of the valve toward the centre of the inflated bladder and an electronic transmission device on said mounting structure remote from said valve. The mounting structure is preferably a lightweight polymeric cylinder with the electronics fitted at the end remote from the valve and close to the centre of mass of the ball. The device is within the ball, and is constrained from moving around inside the ball.


The current inventive technology relates to methods and apparatus for a providing an energy efficient and durable landscape lamp. The lamp can retract when not in use to prevent damage. The high efficiency retractable landscape lamp of this invention may be powered by conventional distributed low voltage or by a solar photovoltaic (PV) source. In some embodiments the lamp may be powered by low voltage, it may be individually interchangeable with a conventional low voltage landscape lamp or may be installed in a low voltage lighting complete system. This lamp may house the electrical components and gearmotor in an upper dry compartment making it reliable in outdoor installations, even in wet environments. This invention can also relate to operation without the need for unreliable limit switches for the raising and lowering of the lamp.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Fellowship | Award Amount: 721.30K | Year: 2016

My proposed Fellowship will revolutionise the use of High Performance Computing (HPC) within The University of Sheffield by changing perceptions of how people utilise software and are trained and supported in writing code which scales to increasingly large computer systems. I will provide leadership by demonstrating the effectiveness of specific research software engineer roles, and by growing a team of research software engineer at The University of Sheffield in order to accommodate our expanding programme of research computing. I will achieve this by: 1) developing the FLAME and FLAME GPU software to facilitate and demonstrate the impact of Graphics Processing Unit (GPU) computing on the areas of complex systems simulation; 2) vastly extending the remit of GPUComputing@Sheffield to provide advanced training and research consultancy, and to embed specific software engineering skills for high-performance data parallel computing (with GPUs and Xeon Phis) across EPSRC-remit research areas at The University of Sheffield. My first activity will enable long-term support of the extensive use of FLAME and FLAME GPU for EPSRC, industry and EU-funded research projects. The computational science and engineering projects supported will include those as diverse as computational economics, bioinformatics and transport simulation. Additionally, my software will provide a platform for more fundamental computer science research into complexity science, graphics and visualisation, programming languages and compilers, and software engineering. My second activity will champion GPU computing within The University of Sheffield (and beyond to its collaborators and industrial partners). It will demonstrate how a specific area of research software engineering can be embedded into The University of Sheffield, and act as a model for further improvement in areas such as research software and data storage. I will change the way people develop and use research software by providing training to students and researchers who can then embed GPU software engineering skills across research domains. I will also aid researchers who work on computationally demanding research by providing software engineering consultancy in areas that can benefit from GPU acceleration, such as, mobile GPU computing for robotics, deep neural network simulation for machine learning (including speech, hearing and Natural language processing) and real time signal processing. The impact of my Fellowship will vastly expand the scale and quality of research computing at The University of Sheffield, embed skills within students and researchers (with long-term and wide-reaching results) and ensure energy-efficient use of HPC. This will promote the understanding and wider use of GPU computing within research, as well as transitioning researchers to larger regional and national HPC facilities. Ultimately my research software engineer fellowship will facilitate the delivery of excellent science whilst promoting the unique and important role of the Research Software Engineer.


The current inventive technology relates to methods and apparatus for a providing an energy efficient and durable landscape lamp. The lamp can retract when not in use to prevent damage. The high efficiency retractable landscape lamp of this invention may be powered by conventional distributed low voltage or by a solar photovoltaic (PV) source. In some embodiments the lamp may be powered by low voltage, it may be individually interchangeable with a conventional low voltage landscape lamp or may be installed in a low voltage lighting complete system. This lamp may house the electrical components and gearmotor in an upper dry compartment making it reliable in outdoor installations, even in wet environments. This invention can also relate to operation without the need for unreliable limit switches for the raising and lowering of the lamp.

Discover hidden collaborations