Catalysis Center for Energy Innovation

Sun City Center, United States

Catalysis Center for Energy Innovation

Sun City Center, United States

Time filter

Source Type

News Article | April 25, 2017
Site: www.rdmag.com

Synthetic rubber and plastics – used for manufacturing tires, toys and myriad other products – are produced from butadiene, a molecule traditionally made from petroleum or natural gas. But those manmade materials could get a lot greener soon, thanks to the ingenuity of a team of scientists from three U.S. research universities. The scientific team –- from the University of Delaware, the University of Minnesota and the University of Massachusetts – has invented a process to make butadiene from renewable sources like trees, grasses and corn. The findings, now online, will be published in the American Chemical Society’s ACS Sustainable Chemistry and Engineering, a leading journal in green chemistry and engineering. The study’s authors are all affiliated with the Catalysis Center for Energy Innovation (CCEI) based at the University of Delaware. CCEI is an Energy Frontier Research Center funded by the U.S. Department of Energy. “Our team combined a catalyst we recently discovered with new and exciting chemistry to find the first high-yield, low-cost method of manufacturing butadiene,” says CCEI Director Dionisios Vlachos, the Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering at UD and a co-author of the study. “This research could transform the multi-billion-dollar plastics and rubber industries.” Butadiene is the chief chemical component in a broad range of materials found throughout society. When this four-carbon molecule undergoes a chemical reaction to form long chains called polymers, styrene-butadiene rubber (SBR) is formed, which is used to make abrasive-resistant automobile tires. When blended to make nitrile butadiene rubber (NBR), it becomes the key component in hoses, seals and the rubber gloves ubiquitous to medical settings. In the world of plastics, butadiene is the chief chemical component in acrylonitrile-butadiene-styrene (ABS), a hard plastic that can be molded into rigid shapes. Tough ABS plastic is used to make video game consoles, automotive parts, sporting goods, medical devices and interlocking plastic toy bricks, among other products. The past 10 years have seen a shift toward an academic research focus on renewable chemicals and butadiene, in particular, due to its importance in commercial products, Vlachos says. “Our team’s success came from our philosophy that connects research in novel catalytic materials with a new approach to the chemistry,” says Vlachos. “This is a great example where the research team was greater than the sum of its parts.” Novel chemistry in three steps The novel chemistry included a three-step process starting from biomass-derived sugars. Using technology developed within CCEI, the team converted sugars to a ring compound called furfural. In the second step, the team further processed furfural to another ring compound called tetrahydrofuran (THF). It was in the third step that the team found the breakthrough chemical manufacturing technology. Using a new catalyst called “phosphorous all-silica zeolite,” developed within the center, the team was able to convert THF to butadiene with high yield (greater than 95 percent). The team called this new, selective reaction “dehydra-decyclization” to represent its capability for simultaneously removing water and opening ring compounds at once. “We discovered that phosphorus-based catalysts supported by silica and zeolites exhibit high selectivity for manufacturing chemicals like butadiene,” says Prof. Wei Fan of the University of Massachusetts Amherst. “When comparing their capability for controlling certain industrial chemistry uses with that of other catalysts, the phosphorous materials appear truly unique and nicely complement the set of catalysts we have been developing at CCEI.” The invention of renewable rubber is part of CCEI’s larger mission. Initiated in 2009, CCEI has focused on transformational catalytic technology to produce renewable chemicals and biofuels from natural biomass sources. “This newer technology significantly expands the slate of molecules we can make from lignocellulose,” says Prof. Paul Dauenhauer of the University of Minnesota, who is co-director of CCEI and a co-author of the study. Additional co-authors include Prof. Michael Tsapatsis, postdoctoral researchers Dae Sung Park, Charles Spanjers, Limin Ren and Omar Abdelrahman, and graduate student Katherine Vinter, all from the University of Minnesota, and graduate student Hong Je Cho from the University of Massachusetts. To read the full research paper, titled “Biomass-Derived Butadiene by Dehydra-Decyclization of Tetrahydrofuran,” visit the ACS Sustainable Chemistry and Engineering website.


News Article | April 25, 2017
Site: www.rdmag.com

Synthetic rubber and plastics – used for manufacturing tires, toys and myriad other products – are produced from butadiene, a molecule traditionally made from petroleum or natural gas. But those manmade materials could get a lot greener soon, thanks to the ingenuity of a team of scientists from three U.S. research universities. The scientific team –- from the University of Delaware, the University of Minnesota and the University of Massachusetts – has invented a process to make butadiene from renewable sources like trees, grasses and corn. The findings, now online, will be published in the American Chemical Society’s ACS Sustainable Chemistry and Engineering, a leading journal in green chemistry and engineering. The study’s authors are all affiliated with the Catalysis Center for Energy Innovation (CCEI) based at the University of Delaware. CCEI is an Energy Frontier Research Center funded by the U.S. Department of Energy. “Our team combined a catalyst we recently discovered with new and exciting chemistry to find the first high-yield, low-cost method of manufacturing butadiene,” says CCEI Director Dionisios Vlachos, the Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering at UD and a co-author of the study. “This research could transform the multi-billion-dollar plastics and rubber industries.” Butadiene is the chief chemical component in a broad range of materials found throughout society. When this four-carbon molecule undergoes a chemical reaction to form long chains called polymers, styrene-butadiene rubber (SBR) is formed, which is used to make abrasive-resistant automobile tires. When blended to make nitrile butadiene rubber (NBR), it becomes the key component in hoses, seals and the rubber gloves ubiquitous to medical settings. In the world of plastics, butadiene is the chief chemical component in acrylonitrile-butadiene-styrene (ABS), a hard plastic that can be molded into rigid shapes. Tough ABS plastic is used to make video game consoles, automotive parts, sporting goods, medical devices and interlocking plastic toy bricks, among other products. The past 10 years have seen a shift toward an academic research focus on renewable chemicals and butadiene, in particular, due to its importance in commercial products, Vlachos says. “Our team’s success came from our philosophy that connects research in novel catalytic materials with a new approach to the chemistry,” says Vlachos. “This is a great example where the research team was greater than the sum of its parts.” Novel chemistry in three steps The novel chemistry included a three-step process starting from biomass-derived sugars. Using technology developed within CCEI, the team converted sugars to a ring compound called furfural. In the second step, the team further processed furfural to another ring compound called tetrahydrofuran (THF). It was in the third step that the team found the breakthrough chemical manufacturing technology. Using a new catalyst called “phosphorous all-silica zeolite,” developed within the center, the team was able to convert THF to butadiene with high yield (greater than 95 percent). The team called this new, selective reaction “dehydra-decyclization” to represent its capability for simultaneously removing water and opening ring compounds at once. “We discovered that phosphorus-based catalysts supported by silica and zeolites exhibit high selectivity for manufacturing chemicals like butadiene,” says Prof. Wei Fan of the University of Massachusetts Amherst. “When comparing their capability for controlling certain industrial chemistry uses with that of other catalysts, the phosphorous materials appear truly unique and nicely complement the set of catalysts we have been developing at CCEI.” The invention of renewable rubber is part of CCEI’s larger mission. Initiated in 2009, CCEI has focused on transformational catalytic technology to produce renewable chemicals and biofuels from natural biomass sources. “This newer technology significantly expands the slate of molecules we can make from lignocellulose,” says Prof. Paul Dauenhauer of the University of Minnesota, who is co-director of CCEI and a co-author of the study. Additional co-authors include Prof. Michael Tsapatsis, postdoctoral researchers Dae Sung Park, Charles Spanjers, Limin Ren and Omar Abdelrahman, and graduate student Katherine Vinter, all from the University of Minnesota, and graduate student Hong Je Cho from the University of Massachusetts. To read the full research paper, titled “Biomass-Derived Butadiene by Dehydra-Decyclization of Tetrahydrofuran,” visit the ACS Sustainable Chemistry and Engineering website.


Do P.T.M.,Catalysis Center for Energy Innovation | Do P.T.M.,Honeywell | McAtee J.R.,University of Delaware | Watson D.A.,University of Delaware | Lobo R.F.,Catalysis Center for Energy Innovation
ACS Catalysis | Year: 2013

The reaction of 2,5-dimethylfuran and ethylene to produce p-xylene represents a potentially important route for the conversion of biomass to high-value organic chemicals. Current preparation methods suffer from low selectivity and produce a number of byproducts. Using modern separation and analytical techniques, the structures of many of the byproducts produced in this reaction when HY zeolite is employed as a catalyst have been identified. From these data, a detailed reaction network is proposed, demonstrating that hydrolysis and electrophilic alkylation reactions compete with the desired Diels-Alder/dehydration sequence. This information will allow the rational identification of more selective catalysts and more selective reaction conditions. © 2012 American Chemical Society.


News Article | November 28, 2016
Site: www.greencarcongress.com

« Volkswagen Group and SOVAC to produce vehicles in Algeria | Main | GLM launches EV brand and shows two models in Hong Kong » A team from the University of Massachusetts Amherst, the University of Minnesota, the University of Pennsylvania and the University of Delaware has developed a new chemical process to make p-xylene, an important ingredient of common plastics. The new method has a 97% yield and uses biomass as the feedstock. P-xylene is currently produced from petroleum. The research is featured in the current issue of the journal ChemCatChem. Xylene chemicals are used to produce a plastic called PET (polyethylene terephthalate), which is currently used in many products including soda bottles, food packaging, synthetic fibers for clothing and automotive parts. Global market forecasts estimate that the market for plastic products using this chemical will grow by about 5% annually. The key to the new process, which builds on previous work by the research team, is a new zeolite catalyst that directs the liquid chemical reaction to produce p-xylene and discourages the production of other byproducts. Previous efforts to make p-xylene in this manner have not achieved a yield higher than 75%. The new zeolite was synthesized to contain phosphorous which helps create a much more selective chemical reaction that almost exclusively yields p-xylene. The phosphorous containing zeolite catalysts exhibit high surface area and well dispersed phosphorous active sites. Different from conventional acid catalysts, the phosphorous containing zeolite catalysts is highly selective for p-xylene production. The selectivity is unique and has not been observed in the past. It can be easily used for many other important catalytic reactions. The research team is part of the Catalysis Center for Energy Innovation that seeks to find breakthrough technologies for producing biofuels and chemicals from lignocellulosic biomass. The center is funded by the US Department of Energy as part of the Energy Frontiers Research Center (EFRC) program, which involves more than 20 faculty members with complementary skills to collaborate on solving the world’s most pressing energy challenges.


« Obama Administration proposes $4B to accelerate development and adoption of autonomous vehicles; policy update | Main | Mammoet switches Dutch operations to Shell GTL fuel » Researchers at the University of Delaware, with a colleague at the Beijing University of Chemical Technology, have developed a composite catalyst—nickel nanoparticles supported on nitrogen-doped carbon nanotubes—that exhibits hydrogen oxidation activity in alkaline electrolyte similar to platinum-group metals. An open access paper on their work is published in the journal Nature Communications. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, they increase the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles, the researchers reported. Owing to its high activity and low cost, the catalyst shows significant potential for use in low-cost, high-performance fuel cells, the team suggested. Polymer electrolyte membrane (PEM) fuel cells are based on two half-cell reactions: hydrogen oxidation reaction (HOR) at the anode and oxygen reduction reaction (ORR) at the cathode. Pt is the most active catalyst for both HOR and ORR; the high price of the metal (~$50 g−1) has hindered fuel cell commercialization. This, in turn, has compelled engineers to (1) work to reduce the platinum loading in the membrane assemblies and (2) find alternate, lower-cost catalysts that offer comparable performance to platinum. Although the various efforts have managed to reduce the total content of platinum-group metals (PGMs) in the state-of-the-art proton exchange membrane fuel cell (PEMFC) stacks, more than 0.137  g Pt kW−1 is still needed, the University of Delaware team said. One promising approach to reduce the cost of fuel cells is to switch the operating environment from an acidic to a basic one (that is, a hydroxide exchange membrane fuel cell, HEMFC), thus opening up the possibility of using PGM-free catalysts and other cheaper components. For the cathode of the HEMFC, some PGM-free and metal-free ORR catalysts have been developed that show comparable activity to Pt in alkaline media. However, for the anode side, only a few PGMs (for example, Pt, Ir and Pd) show adequate activity. The HOR catalyzed by Pt is very fast in acidic conditions so that a very low loading of the Pt catalyst could be used relative to the cathode side in PEMFCs. However, the HOR activities of PGMs are ~100 times slower in alkaline solutions. As a result, a much higher loading of the HOR catalyst is required (0.4  mg Pt  cm−2 in a HEMFC compared with 0.03  mg Pt  cm−2 in a PEMFC) to achieve similar performance. Thus, it is highly desirable to develop PGM-free anode catalysts for the HOR in alkaline electrolyte. Unlike its reverse reaction (hydrogen evolution reaction, HER), only a few PGM-free HOR catalysts have been reported. One possibility is to use Raney Ni as the HOR catalyst in liquid alkaline fuel cells. However, it is functional only under very high alkalinity (6 M KOH) while the activity remains low. It is not catalytically active for a HEMFC, which can be mimicked as 0.1–1 M KOH. Efforts have been made to improve the HOR activity of the Ni-based catalyst in the last decade. Ni alloys, such as NiMo and NiTi, have been shown to enhance the HOR activity. Our recent work has also shown that electrochemically deposited NiCoMo on an Au substrate has a high HOR activity. Zhuang and co-workers decorated Ni particles with CrOx to weaken the Ni–O bond and stabilize the Ni catalysts. A HEMFC incorporating this PGM-free catalyst has been fabricated, and it exhibits a peak power density of 50  mW  cm−2. Although the power density is still low (compared with the peak power density of more than 1,000  mW  cm−2 for PEMFCs), it demonstrates the possibility to fabricate low-cost PGM-free fuel cells. However, their activities are still incomparable with PGM-based catalysts. In the Nature Communications study, the team synthesized Ni nanoparticles supported on N-doped carbon nanotubes (Ni/N-CNT) using a wet chemical method. The nanotubes are not only the support for the Ni nanoparticles, but also a promoter for the catalytic activity. Using density functional theory (DFT) calculations to understand the interaction between the Ni nanoparticle and the N-CNT support, the team found that, when nitrogen dopants are present at the edge of the nanoparticle, the Ni nanoparticle is stabilized on the support and locally activated for the HOR because of modulation of the Ni d-orbitals. The experimental work was supported by the ARPA-E program of the US Department of Energy under Award Number DE-AR0000009. The computational work was financially supported by the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004. Stephen Giles was supported by a fellowship from the University of Delaware Energy Institute. The research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


News Article | October 27, 2016
Site: www.cemag.us

A team of researchers, led by the University of Minnesota, has invented a new soap molecule made from renewable sources that could dramatically reduce the number of chemicals in cleaning products and their impact on the environment. The soap molecules also worked better than some conventional soaps in challenging conditions such as cold water and hard water. The technology has been patented by the University of Minnesota and is licensed to the new Minnesota-based startup company Sironix Renewables. The new study is now online and will be published in the next issue of the American Chemical Society’s ACS Central Science, a leading journal in the chemical sciences. Authors of the study include researchers from the University of Minnesota, University of Delaware, University of Massachusetts Amherst, Sironix Renewables, and the U.S. Department of Energy’s Catalysis Center for Energy Innovation and Argonne National Laboratory. “Our team created a soap molecule made from natural products, like soybeans, coconut and corn, that works better than regular soaps and is better for the environment,” says Paul Dauenhauer, a University of Minnesota associate professor of chemical engineering and materials science and a co-author of the study. “This research could have a major impact on the multibillion-dollar cleaning products industry.” Conventional soaps and detergents are viewed as environmentally unfriendly because they are made from fossil fuels. When formulated into shampoos, hand soaps, or dishwashing detergents, these soaps are mixed with many additional difficult-to-pronounce and harmful chemicals that are washed down the drain. Funded by the U.S. Department of Energy, researchers from the Catalysis Center for Energy Innovation developed a new chemical process to combine fatty acids from soybeans or coconut and sugar-derived rings from corn to make a renewable soap molecule called Oleo-Furan-Surfactant (OFS). They found that OFS worked well in cold water where conventional soaps become cloudy and gooey rendering them unusable. Additionally, OFS soaps were shown to form soap particles (called micelles) necessary for cleaning applications at low concentrations, which significantly reduces the environmental impact on rivers and lakes. The new renewable OFS soap was also engineered to work in extremely hard water conditions. For many locations around the world, minerals in the water bind with conventional soaps and turn them into solid goo. “I think everybody has had the problem of trying to get shampoo out of their hair in hard water — it just doesn’t come out,” says Dauenhauer. To combat this problem, most existing soaps and detergents add an array of additional chemicals, called chelants, to grab these minerals and prevent them from interfering with soap molecules. This problem has led to a long list of extra chemical ingredients in most conventional cleaning products, many of which are harmful to the environment. The new OFS soap eliminates the hard water problem by using a naturally derived source that does not bind strongly to minerals in water. The researchers found that OFS molecules were shown to form soap particles (micelles) even at 100 times the conventional hard water conditions. As a result, a cleaning product’s ingredient list could be significantly simplified. “The impact of OFS soaps will be greater than their detergent performance,” says University of Minnesota chemical engineering and materials science graduate student Kristeen Joseph. “OFS is made from straight carbon chains derived from soybeans or coconut which can readily biodegrade. These are really the perfect soap molecules.” The researchers also use nanoparticle catalysts to optimize the soap structure for foaming ability and other cleaning capabilities. In addition to biodegradability and cleaning performance, OFS was shown to foam with the consistency of conventional detergents, which means it could directly replace soaps in existing equipment such as washing machines, dishwashers, and consumer products. The invention of new soap technology is part of a larger mission of the Catalysis Center for Energy Innovation (CCEI), a U.S. Department of Energy — Energy Frontier Research Center led by the University of Delaware. Initiated in 2009, the CCEI has focused on transformational catalytic technology to produce renewable chemicals and biofuels from natural biomass sources. In addition to Dauenhauer and Joseph, researchers who were part of the study from the University of Minnesota were professor Michael Tsapatsis, postdoctoral researcher Dae Sung Park, and current and former students Limin Ren, Meera H. Shete, Han Seung Lee, and Jonathan N. Damen. Researchers from the University of Delaware were professors Dionisios G. Vlachos, Raul F. Lobo, and graduate student Maura Koehle. Others included University of Massachusetts Amherst professor Wei Fan, Sironix Renewables founder and recent University of Minnesota graduate Christoph Krumm, and Argonne National Laboratory researchers Xiaobing Zuo and Byeongdu Lee.


News Article | October 26, 2016
Site: www.chromatographytechniques.com

A team of researchers, led by the University of Minnesota, has invented a new soap molecule made from renewable sources that could dramatically reduce the number of chemicals in cleaning products and their impact on the environment. The soap molecules also worked better than some conventional soaps in challenging conditions such as cold water and hard water. The technology has been patented by the University of Minnesota and is licensed to the new Minnesota-based startup company Sironix Renewables. The new study is now online and will be published in the next issue of the American Chemical Society’s ACS Central Science, a leading journal in the chemical sciences. Authors of the study include researchers from the University of Minnesota, University of Delaware, University of Massachusetts Amherst, Sironix Renewables, and the U.S. Department of Energy’s Catalysis Center for Energy Innovation and Argonne National Laboratory. “Our team created a soap molecule made from natural products, like soybeans, coconut and corn, that works better than regular soaps and is better for the environment,” said Paul Dauenhauer, a University of Minnesota associate professor of chemical engineering and materials science and a co-author of the study. “This research could have a major impact on the multibillion-dollar cleaning products industry.” Conventional soaps and detergents are viewed as environmentally unfriendly because they are made from fossil fuels. When formulated into shampoos, hand soaps, or dishwashing detergents, these soaps are mixed with many additional difficult-to-pronounce and harmful chemicals that are washed down the drain. Funded by the U.S. Department of Energy, researchers from the Catalysis Center for Energy Innovation developed a new chemical process to combine fatty acids from soybeans or coconut and sugar-derived rings from corn to make a renewable soap molecule called Oleo-Furan-Surfactant (OFS). They found that OFS worked well in cold water where conventional soaps become cloudy and gooey rendering them unusable. Additionally, OFS soaps were shown to form soap particles (called micelles) necessary for cleaning applications at low concentrations, which significantly reduces the environmental impact on rivers and lakes. The new renewable OFS soap was also engineered to work in extremely hard water conditions. For many locations around the world, minerals in the water bind with conventional soaps and turn them into solid goo. “I think everybody has had the problem of trying to get shampoo out of their hair in hard water—it just doesn’t come out,” said Dauenhauer. To combat this problem, most existing soaps and detergents add an array of additional chemicals, called chelants, to grab these minerals and prevent them from interfering with soap molecules. This problem has led to a long list of extra chemical ingredients in most conventional cleaning products, many of which are harmful to the environment. The new OFS soap eliminates the hard water problem by using a naturally derived source that does not bind strongly to minerals in water. The researchers found that OFS molecules were shown to form soap particles (micelles) even at 100 times the conventional hard water conditions. As a result, a cleaning product’s ingredient list could be significantly simplified. “The impact of OFS soaps will be greater than their detergent performance,” said University of Minnesota chemical engineering and materials science graduate student Kristeen Joseph. “OFS is made from straight carbon chains derived from soybeans or coconut which can readily biodegrade. These are really the perfect soap molecules.” The researchers also use nanoparticle catalysts to optimize the soap structure for foaming ability and other cleaning capabilities. In addition to biodegradability and cleaning performance, OFS was shown to foam with the consistency of conventional detergents, which means it could directly replace soaps in existing equipment such as washing machines, dishwashers, and consumer products. The invention of new soap technology is part of a larger mission of the Catalysis Center for Energy Innovation (CCEI), a U.S. Department of Energy – Energy Frontier Research Center led by the University of Delaware. Initiated in 2009, the CCEI has focused on transformational catalytic technology to produce renewable chemicals and biofuels from natural biomass sources.


News Article | October 26, 2016
Site: www.eurekalert.org

A team of researchers, led by the University of Minnesota, has invented a new soap molecule made from renewable sources that could dramatically reduce the number of chemicals in cleaning products and their impact on the environment. The soap molecules also worked better than some conventional soaps in challenging conditions such as cold water and hard water. The technology has been patented by the University of Minnesota and is licensed to the new Minnesota-based startup company Sironix Renewables. The new study is now online and will be published in the next issue of the American Chemical Society's ACS Central Science, a leading journal in the chemical sciences. Authors of the study include researchers from the University of Minnesota, University of Delaware, University of Massachusetts Amherst, Sironix Renewables, and the U.S. Department of Energy's Catalysis Center for Energy Innovation and Argonne National Laboratory. "Our team created a soap molecule made from natural products, like soybeans, coconut and corn, that works better than regular soaps and is better for the environment," said Paul Dauenhauer, a University of Minnesota associate professor of chemical engineering and materials science and a co-author of the study. "This research could have a major impact on the multibillion-dollar cleaning products industry." Conventional soaps and detergents are viewed as environmentally unfriendly because they are made from fossil fuels. When formulated into shampoos, hand soaps, or dishwashing detergents, these soaps are mixed with many additional difficult-to-pronounce and harmful chemicals that are washed down the drain. Funded by the U.S. Department of Energy, researchers from the Catalysis Center for Energy Innovation developed a new chemical process to combine fatty acids from soybeans or coconut and sugar-derived rings from corn to make a renewable soap molecule called Oleo-Furan-Surfactant (OFS). They found that OFS worked well in cold water where conventional soaps become cloudy and gooey rendering them unusable. Additionally, OFS soaps were shown to form soap particles (called micelles) necessary for cleaning applications at low concentrations, which significantly reduces the environmental impact on rivers and lakes. The new renewable OFS soap was also engineered to work in extremely hard water conditions. For many locations around the world, minerals in the water bind with conventional soaps and turn them into solid goo. "I think everybody has had the problem of trying to get shampoo out of their hair in hard water--it just doesn't come out," said Dauenhauer. To combat this problem, most existing soaps and detergents add an array of additional chemicals, called chelants, to grab these minerals and prevent them from interfering with soap molecules. This problem has led to a long list of extra chemical ingredients in most conventional cleaning products, many of which are harmful to the environment. The new OFS soap eliminates the hard water problem by using a naturally derived source that does not bind strongly to minerals in water. The researchers found that OFS molecules were shown to form soap particles (micelles) even at 100 times the conventional hard water conditions. As a result, a cleaning product's ingredient list could be significantly simplified. "The impact of OFS soaps will be greater than their detergent performance," said University of Minnesota chemical engineering and materials science graduate student Kristeen Joseph. "OFS is made from straight carbon chains derived from soybeans or coconut which can readily biodegrade. These are really the perfect soap molecules." The researchers also use nanoparticle catalysts to optimize the soap structure for foaming ability and other cleaning capabilities. In addition to biodegradability and cleaning performance, OFS was shown to foam with the consistency of conventional detergents, which means it could directly replace soaps in existing equipment such as washing machines, dishwashers, and consumer products. The invention of new soap technology is part of a larger mission of the Catalysis Center for Energy Innovation (CCEI), a U.S. Department of Energy - Energy Frontier Research Center led by the University of Delaware. Initiated in 2009, the CCEI has focused on transformational catalytic technology to produce renewable chemicals and biofuels from natural biomass sources. In addition to Dauenhauer and Joseph, researchers who were part of the study from the University of Minnesota were professor Michael Tsapatsis, postdoctoral researcher Dae Sung Park, and current and former students Limin Ren, Meera H. Shete, Han Seung Lee, and Jonathan N. Damen. Researchers from the University of Delaware were professors Dionisios G. Vlachos, Raul F. Lobo, and graduate student Maura Koehle. Others included University of Massachusetts Amherst professor Wei Fan, Sironix Renewables founder and recent University of Minnesota graduate Christoph Krumm, and Argonne National Laboratory researchers Xiaobing Zuo and Byeongdu Lee. To read the full research paper entitled "Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans," visit the ACS Central Science website.


Lee W.-S.,University of Minnesota | Lee W.-S.,Catalysis Center for Energy Innovation | Wang Z.,University of Minnesota | Wang Z.,Catalysis Center for Energy Innovation | And 6 more authors.
Catalysis Science and Technology | Year: 2014

Vapor phase hydrodeoxygenation (HDO) of furfural over Mo2C catalysts at low temperatures (423 K) and ambient pressure showed high/low selectivity to CO bond/C-C bond cleavage, resulting in selectivity to 2-methylfuran (2MF) and furan of ~50-60% and <1%, respectively. Efficient usage of H2 for deoxygenation, instead of unwanted sequential hydrogenation, was evidenced by the low selectivity to 2-methyltetrahydrofuran. The apparent activation energy and H2 order for 2MF production rates were both found to be invariant with furfural conversion caused by catalyst deactivation, suggesting that (1) the measured reaction kinetics are not influenced by the products of furfural HDO and (2) the loss of active sites, presumably by formation of carbonaceous species observed by TEM analysis, is the reason for the observed catalyst deactivation. The observed half order dependence of 2MF production rates on H2 pressure at different furfural pressures (~0.12-0.96 kPa) and the 0-0.3 order dependence in furfural pressure support the idea of two distinct sites required for vapor phase furfural HDO reactions on Mo2C catalysts. The invariance of 2MF production rates normalized by the number of catalytic centers assessed via ex situ CO chemisorption suggests that metal-like sites on Mo2C catalysts are involved in selective HDO reactions. © 2014 the Partner Organisations.


News Article | January 19, 2016
Site: www.nanotech-now.com

Abstract: "Planes, Trains and Automobiles" is a popular comedy from the 1980s, but there's nothing funny about the amount of energy consumed by our nation's transportation sector. This sector -- which includes passenger cars, trucks, buses, and rail, marine, and air transport -- accounts for more than 20 percent of America's energy use, mostly in the form of fossil fuels, so the search is on for environmentally friendly alternatives. The two most promising current candidates for cars are fuel cells, which convert the chemical energy of hydrogen to electricity, and rechargeable batteries. The University of Delaware's Yushan Yan believes that fuel cells will eventually win out. "Both fuel cells and batteries are clean technologies that have their own sets of challenges for commercialization," says Yan, Distinguished Engineering Professor in the Department of Chemical and Biomolecular Engineering. "The key difference, however, is that the problems facing battery cars, such as short driving range and long battery charging time, are left with the customers. By contrast, fuel cell cars demand almost no change in customer experience because they can be charged in less than 5 minutes and be driven for more than 300 miles in one charge. And these challenges, such as hydrogen production and transportation, lie with the engineers." Yan is prepared to address the biggest challenge fuel cells do face -- cost. He and colleagues recently reported a breakthrough that promises to bring down the cost of hydrogen fuel cells by replacing expensive platinum catalysts with cheaper ones made from metals like nickel. The work is documented in a paper published Jan. 14 in Nature Communications. The researchers achieved the breakthrough by switching the operating environment from acidic to basic, and they found that nickel matched the activity of platinum. "This new hydroxide exchange membrane fuel cell can offer high performance at an unprecedented low cost," Yan says. "Our real hope is that we can put hydroxide exchange membrane fuel cells into cars and make them truly affordable -- maybe $23,000 for a Toyota Mirai. Once the cars themselves are more affordable, that will drive development of the infrastructure to support the hydrogen economy." ### About the research The experimental work was supported by the ARPA-E program of the U.S. Department of Energy under Award Number DE-AR0000009. The computational work was financially supported by the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004. Stephen Giles was supported by a fellowship from the University of Delaware Energy Institute. The research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Loading Catalysis Center for Energy Innovation collaborators
Loading Catalysis Center for Energy Innovation collaborators