Time filter

Source Type

Fernandez-Arroyo S.,Hospital Universitari Sant Joan | Camps J.,Hospital Universitari Sant Joan | Menendez J.A.,Catalan Institute of Oncology Girona | Joven J.,Hospital Universitari Sant Joan
Planta Medica | Year: 2015

Some polyphenols, obtained from plants of broad use, induce a favorable endothelial response in hypertension and beneficial effects in the management of other metabolic cardiovascular risks. Previous studies in our laboratories using the calyces of Hibiscus sabdariffa as a source of polyphenols show that significant effects on hypertension are noticeable in humans only when provided in high amounts. Available data are suggestive in animal models and ex vivo experiments, but data in humans are difficult to acquire. Additionally, and despite the low bioavailability of polyphenols, intervention studies provide evidence for the protective effects of secondary plant metabolites. Assumptions on public health benefits are limited by the lack of scientific knowledge, robust data derived from large randomized clinical trials, and an accurate assessment of the bioactive components provided by common foodstuff. Because it is likely that clinical effects are the result of multiple interactions among different polyphenols rather than the isolated action of unique compounds, to provide polyphenol-rich botanical extracts as dietary supplements is a suggestive option. Unfortunately, the lack of patent perspectives for the pharmaceutical industries and the high cost of production and release for alimentary industries will hamper the performance of the necessary clinical trials. Here we briefly discuss whether and how such limitations may complicate the extensive use of plant-derived products in the management of hypertension and which steps are the necessary to deal with the predictable complexity in a possible clinical practice.

Beltran-Debon R.,Rovira i Virgili University | Rodriguez-Gallego E.,Rovira i Virgili University | Fernandez-Arroyo S.,Rovira i Virgili University | Senan-Campos O.,Rovira i Virgili University | And 8 more authors.
Food and Function | Year: 2015

We explored the acute multifunctional effects of polyphenols from Hibiscus sabdariffa in humans to assess possible consequences on the host's health. The expected dynamic response was studied using a combination of transcriptomics and metabolomics to integrate specific functional pathways through network-based methods and to generate hypotheses established by acute metabolic effects and/or modifications in the expression of relevant genes. Data were obtained from healthy male volunteers after 3 hours of ingestion of an aqueous Hibiscus sabdariffa extract. The data were compared with data obtained prior to the ingestion, and the overall findings suggest that these particular polyphenols had a simultaneous role in mitochondrial function, energy homeostasis and protection of the cardiovascular system. These findings suggest beneficial actions in inflammation, endothelial dysfunction, and oxidation, which are interrelated mechanisms. Among other effects, the activation of the heme oxygenase-biliverdin reductase axis, the systemic inhibition of the renin-angiotensin system, the inhibition of the angiotensin-converting enzyme, and several actions mirroring those of the peroxisome proliferator-activated receptor agonists further support this notion. We also found concordant findings in the serum of the participants, which include a decrease in cortisol levels and a significant increase in the active vasodilator metabolite of bradykinin (des-Arg(9)-bradykinin). Therefore, our data support the view that polyphenols from Hibiscus sabdariffa play a regulatory role in metabolic health and in the maintenance of blood pressure, thus implying a multi-faceted impact in metabolic and cardiovascular diseases. © 2015 Royal Society of Chemistry.

Oliveras-Ferraros C.,Catalan Institute of Oncology Girona | Oliveras-Ferraros C.,Girona Biomedical Research Institute IDIBGI | Vazquez-Martin A.,Catalan Institute of Oncology Girona | Vazquez-Martin A.,Girona Biomedical Research Institute IDIBGI | And 28 more authors.
International Journal of Oncology | Year: 2011

KRAS mutation status is being used as the sole biomarker to predict therapeutic efficacy of cetuximab in metastatic colorectal cancer (mCRC). A significant number of mCRC patients with KRAS wild-type (WT) tumors, however, do not benefit from cetuximab. We are also lacking efficacy predictors in head and neck squamous cell carcinomas with an intact KRAS signaling and in non-small cell lung cancer in which KRAS mutations do not predict cetuximab efficacy. We recently established pre-clinical models of EGFR gene-amplified KRAS WT A431 squamous carcinoma cells chronically adapted to grow in the presence of cetuximab. We employed the ingenuity pathway analysis software to functionally interpret data from Agilent's whole human genome arrays in the context of biological processes, networks, and pathways. Cetuximab-induced activation of the interferon (IFN)/STAT1 appeared to switch from 'growth inhibitory' in acutely-treated cells to 'pro-survival' in chronically-adapted cells. Cetuximab treatment appeared to negatively select initially dominant IFN-sensitive clones and promoted selection of IFN- and cetuximab-refractory tumor clones constitutively bearing an up-regulated IFN/STAT1 signaling. High-levels of mRNAs coding for the EGFR ligands amphiregulin (AREG), epiregulin (EREG), and neuregulin-1/heregulin (NRG1) predicted for acute cetuximab's functioning. Chronic cetuximab, however, appeared to negatively select initially dominant AREG/EREG/NRG1-positive clones to promote selection of cetuximab-refractory clones exhibiting a knocked-down neuregulin signaling. Our current evolutionary mapping of the transcriptomic changes that occur during cetuximab-induced chronic blockade of EGFR/KRAS WT signaling strongly suggests that mRNAs coding for IFN/STAT1- and EGFR ligands-related genes can be evaluated as novel predictors of efficacy in KRAS WT squamous cancer patients being treated with cetuximab.

Oliveras-Ferraros C.,Catalan Institute of Oncology Girona | Oliveras-Ferraros C.,Girona Biomedical Research Institute | Vazquez-Martin A.,Catalan Institute of Oncology Girona | Vazquez-Martin A.,Girona Biomedical Research Institute | And 16 more authors.
Biochemical and Biophysical Research Communications | Year: 2011

Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC 50 values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naïve SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed ∼4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated ∼10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely suppressed in JIMT-1 cells. Our current findings may be extremely helpful to design successful combinatorial strategies aimed to circumvent the occurrence of de novo resistance to HER2-directed drugs using survivin antagonists. © 2011 Elsevier Inc.

Discover hidden collaborations