Entity

Time filter

Source Type

Cleveland, OH, United States

Cuttano R.,The FIRC Institute of Molecular Oncology | Rudini N.,The FIRC Institute of Molecular Oncology | Bravi L.,The FIRC Institute of Molecular Oncology | Corada M.,The FIRC Institute of Molecular Oncology | And 21 more authors.
EMBO Molecular Medicine | Year: 2016

Cerebral cavernous malformations (CCMs) are vascular malformations located within the central nervous system often resulting in cerebral hemorrhage. Pharmacological treatment is needed, since current therapy is limited to neurosurgery. Familial CCM is caused by loss-of-function mutations in any of Ccm1, Ccm2, and Ccm3 genes. CCM cavernomas are lined by endothelial cells (ECs) undergoing endothelial-to-mesenchymal transition (EndMT). This switch in phenotype is due to the activation of the transforming growth factor beta/bone morphogenetic protein (TGFβ/BMP) signaling. However, the mechanism linking Ccm gene inactivation and TGFβ/BMP-dependent EndMT remains undefined. Here, we report that Ccm1 ablation leads to the activation of a MEKK3-MEK5-ERK5-MEF2 signaling axis that induces a strong increase in Kruppel-like factor 4 (KLF4) in ECs in vivo. KLF4 transcriptional activity is responsible for the EndMT occurring in CCM1-null ECs. KLF4 promotes TGFβ/BMP signaling through the production of BMP6. Importantly, in endothelial-specific Ccm1 and Klf4 double knockout mice, we observe a strong reduction in the development of CCM and mouse mortality. Our data unveil KLF4 as a therapeutic target for CCM. Synopsis: Current therapy for cerebral cavernous malformation (CCM) therapy is limited to neurosurgery. Transcription factor KLF4 is found to be a crucial determinant for the development of cavernomas and thus a future therapeutic target. KLF4 is strongly upregulated in endothelial cells in the absence of any of the three CCM genes. The endothelial-to-mesenchymal transition observed in endothelial cells null for CCM1 is induced by KLF4. KLF4 activates TGFβ/BMP signaling by increasing Bmp6 expression in endothelial cells in the absence of CCM1. The development and progression of cavernomas is strongly reduced upon genetic Klf4 inactivation. KLF4 is a strong candidate as a novel target for the pharmacological treatment of CCM, since its inactivation reduces mouse mortality associated to this disease by 75%. Current therapy for cerebral cavernous malformation (CCM) therapy is limited to neurosurgery. Transcription factor KLF4 is found to be a crucial determinant for the development of cavernomas and thus a future therapeutic target. © 2016 EMBO. Source


Mahabeleshwar G.,Case Cardiovascular Research Institute | Kawanami D.,Case Cardiovascular Research Institute | Sharma N.,Case Cardiovascular Research Institute | Takami Y.,Case Cardiovascular Research Institute | And 15 more authors.
Immunity | Year: 2011

Precise control of myeloid cell activation is required for optimal host defense. However, this activation process must be under exquisite control to prevent uncontrolled inflammation. Herein, we identify the Kruppel-like transcription factor 2 (KLF2) as a potent regulator of myeloid cell activation in vivo. Exposure of myeloid cells to hypoxia and/or bacterial products reduced KLF2 expression while inducing hypoxia inducible factor-1α (HIF-1α), findings that were recapitulated in human septic patients. Myeloid KLF2 was found to be a potent inhibitor of nuclear factor-kappaB (NF-κB)-dependent HIF-1α transcription and, consequently, a critical determinant of outcome in models of polymicrobial infection and endotoxemia. Collectively, these observations identify KLF2 as a tonic repressor of myeloid cell activation in vivo and an essential regulator of the innate immune system. © 2011 Elsevier Inc. Source


Shi H.,Case Cardiovascular Research Institute | Sheng B.,Case Cardiovascular Research Institute | Zhang C.,Case Cardiovascular Research Institute | Nayak L.,Case Western Reserve University | And 3 more authors.
Journal of Neuroimmunology | Year: 2014

Cells of the innate immune system are important mediators of multiple sclerosis (MS). We have previously identified Kruppel-like factor 2 (KLF2) as a critical negative regulator of myeloid activation in the setting of bacterial infection and sepsis, but the role of myeloid KLF2 in MS has not been investigated. In this study, myeloid KLF2 deficient mice exhibited more severe neurological dysfunction and increased spinal cord demyelination and neuroinflammation in experimental autoimmune encephalomyelitis. This study represents the first description of a significant role of myeloid KLF2 in neuroinflammation, identifying KLF2 as a potential target for further investigation in patients with MS. © 2014 Elsevier B.V. Source


Prosdocimo D.A.,Case Cardiovascular Research Institute | Prosdocimo D.A.,Harrington Heart and Vascular Institute | Prosdocimo D.A.,University Hospitals Case Medical Center | Prosdocimo D.A.,Case Western Reserve University | And 8 more authors.
Trends in Cardiovascular Medicine | Year: 2015

Kruppel-like factors (KLF) are zinc-finger DNA-binding transcription factors that are critical regulators of tissue homeostasis. Emerging evidence suggests that KLFs are critical regulators of muscle biology in the context of cardiovascular health and disease. The focus of this review is to provide an overview of the current state of knowledge regarding the physiologic and pathologic roles of KLFs in the three lineages of muscle: cardiac, smooth, and skeletal. © 2015 Elsevier Inc. Source


Nayak L.,Case Cardiovascular Research Institute | Nayak L.,Case Western Reserve University | Goduni L.,Case Cardiovascular Research Institute | Takami Y.,Case Cardiovascular Research Institute | And 4 more authors.
American Journal of Pathology | Year: 2013

Although myeloid cell activation is requisite for an optimal innate immune response, this process must be tightly controlled to prevent collateral host tissue damage. Kruppel-like factor 2 (KLF2) is a potent regulator of myeloid cell proinflammatory activation. As an approximately 30% to 50% reduction in KLF2 levels has been observed in human subjects with acute or chronic inflammatory disorders, we studied the biological response to inflammation in KLF2+/- mice. Herein, we show that partial deficiency of KLF2 modulates the in vivo response to acute (sepsis) and subacute (skin) inflammatory challenge. Mechanistically, we link the anti-inflammatory effects of KLF2 to the inhibition of NF-κB transcriptional activity. Collectively, the observations provide biologically relevant insights into KLF2-mediated modulation of these inflammatory processes that could potentially be manipulated for therapeutic gain. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. Source

Discover hidden collaborations