Time filter

Source Type

Mu Q.,Shandong University | Mu Q.,Fred Hutchinson Cancer Research Center | Mu Q.,University of Washington | Jiang G.,CAS Research Center for Eco Environmental Sciences | And 5 more authors.
Chemical Reviews | Year: 2014

A recently reported incident of severe pulmonary fibrosis caused by inhaled polymer nanoparticles in seven female workers obtained much attention. In addition to the release of ENM waste from industrial sites, a major release of ENMs to environmental water occurs due to home and personal use of appliances, cosmetics, and personal products, such as shampoo and sunscreen. Airborne and aqueous ENMs pose immediate danger to the human respiratory and gastrointestinal systems. ENMs may enter other human organs after they are absorbed into the bloodstream through the gastrointestinal and respiratory systems. Practically, a thorough understanding of the fundamental chemical interactions between nanoparticles and biological systems has two direct impacts. First, this knowledge will encourage and assist experimental approaches to chemically modify nanoparticle surfaces for various industrial or medicinal applications. Source

Wang B.-G.,CAS Qingdao Institute of Oceanology | Gloer J.B.,University of Iowa | Ji N.-Y.,CAS Yantai Institute of Coastal Zone Research | Zhao J.-C.,CAS Qingdao Institute of Oceanology
Chemical Reviews | Year: 2013

The article highlights the diversity of halogenated organic molecules produced by marine red algal species in the family Rhodomelaceae. Although no review on the many halogenated molecules derived from marine red algae of the family Rhodomelaceae appeared in the literature up to now, a number of excellent reviews on various aspects of naturally occurring halogenated molecules were published. An excellent review dealing with the structures, biogenetic considerations, and biological activities of both halogenated and nonhalogenated polyethers from red algae and sponges appeared in 2000. Because they possess a variety of novel structures and often display potent biological activities, halogenated organic molecules have attracted considerable attention as challenging targets for partial and total synthesis. A number of elegant synthetic strategies and methodologies were developed and employed for the synthesis of such compounds. Source

Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems. Source

Wang Y.,CAS Yantai Institute of Coastal Zone Research | Wang Y.,Chinese Academy of Sciences | Chen L.,Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes
Nanomedicine: Nanotechnology, Biology, and Medicine | Year: 2011

Quantum dots (QDs) have proven themselves as powerful inorganic fluorescent probes, especially for long term, multiplexed imaging and detection. The newly developed QDs labeling techniques have facilitated the study of drug delivery on the level of living cells and small animals. Moreover, based on QDs and fluorescence imaging system, multifunctional nanocomplex integrated targeting, imaging and therapeutic functionalities have become effective materials for synchronous cancer diagnosis and treatment. In this review, we will summarize the recent advances of QDs in the research of drug delivery system from the following aspects: surface modification strategies of QDs for drug delivery, QDs as drug nanocarriers, QD-labeled drug nanocarriers, QD-based fluorescence resonance energy transfer (FRET) technique for drug release study as well as the development of multifunctional nanomedicines. Possible perspective in this field will also be discussed. © 2010 Elsevier Inc. Source

Gao M.,CAS Yantai Institute of Coastal Zone Research
Ecological Research | Year: 2013

Spatial point pattern is an important tool for describing the spatial distribution of species in ecology. Negative binomial distribution (NBD) is widely used to model spatial aggregation. In this paper, we derive the probability distribution model of event-to-event nearest neighbor distance (distance from a focal individual to its n-th nearest individual). Compared with the probability distribution model of point-to-event nearest neighbor distance (distance from a randomly distributed sampling point to the n-th nearest individual), the new probability distribution model is more flexible. We propose that spatial aggregation can be detected by fitting this probability distribution model to event-to-event nearest neighbor distances. The performance is evaluated using both simulated and empirical spatial point patterns. © 2013 The Ecological Society of Japan. Source

Discover hidden collaborations