Entity

Time filter

Source Type


Xiao W.,CAS Wuhan Institute of Hydrobiology
Science China Life Sciences | Year: 2015

The hypoxia signaling pathway is an evolutionarily conserved cellular signaling pathway present in animals ranging from Caenorhabditis elegans to mammals. The pathway is crucial for oxygen homeostasis maintenance. Hypoxia-inducible factors (HIF-1α and HIF-2α) are master regulators in the hypoxia signaling pathway. Oxygen concentrations vary a lot in the aquatic environment. To deal with this, fishes have adapted and developed varying strategies for living in hypoxic conditions. Investigations into the strategies and mechanisms of hypoxia adaptation in fishes will allow us to understand fish speciation and breed hypoxia-tolerant fish species/strains. This review summarizes the process of the hypoxia signaling pathway and its regulation, as well as the mechanism of hypoxia adaptation in fishes. © 2015, The Author(s).


Diaz-Castillo C.,University of California at Irvine | Xia X.-Q.,CAS Wuhan Institute of Hydrobiology | Ranz J.M.,University of California at Irvine
PLoS Genetics | Year: 2012

Why gene order is conserved over long evolutionary timespans remains elusive. A common interpretation is that gene order conservation might reflect the existence of functional constraints that are important for organismal performance. Alteration of the integrity of genomic regions, and therefore of those constraints, would result in detrimental effects. This notion seems especially plausible in those genomes that can easily accommodate gene reshuffling via chromosomal inversions since genomic regions free of constraints are likely to have been disrupted in one or more lineages. Nevertheless, no empirical test has been performed to this notion. Here, we disrupt one of the largest conserved genomic regions of the Drosophila genome by chromosome engineering and examine the phenotypic consequences derived from such disruption. The targeted region exhibits multiple patterns of functional enrichment suggestive of the presence of constraints. The carriers of the disrupted collinear block show no defects in their viability, fertility, and parameters of general homeostasis, although their odorant perception is altered. This change in odorant perception does not correlate with modifications of the level of expression and sex bias of the genes within the genomic region disrupted. Our results indicate that even in highly rearranged genomes, like those of Diptera, unusually high levels of gene order conservation cannot be systematically attributed to functional constraints, which raises the possibility that other mechanisms can be in place and therefore the underpinnings of the maintenance of gene organization might be more diverse than previously thought. © 2012 Díaz-Castillo et al.


Zhang W.,New Jersey Institute of Technology | Zhang X.,CAS Wuhan Institute of Hydrobiology
Water Research | Year: 2015

Adsorption on colloidal particles is one of the environmental processes affecting fate, transport, viability or reproducibility of viruses. This work studied colloidal interactions (adsorption kinetics and isotherms) between different oxide nanoparticles (NPs) (i.e., TiO2, NiO, ZnO, SiO2, and Al2O3) and bacteriophage, MS2. The results shows that that all oxide NPs exhibited strong adsorption capacity for MS2, except SiO2 NPs, which is supported by the extended Derjaguin and Landau, Verwey and Overbeek (EDLVO) theory. Moreover, the implication of such colloidal interactions on water disinfection is manifested by the observations that the presence of TiO2 and ZnO NPs could enhance MS2 inactivation under solar irradiation, whereas NiO and SiO2 decreased MS2 inactivation. By contrast, all of these oxide NPs were found to mitigate chlorine disinfection against MS2 to different extent, and the shielding effect was probably caused by reduced free chlorine and free MS2 in the solution due to sorption onto NPs. Clearly, there is a pressing need to further understand colloidal interactions between engineered NPs and viruses in water to better improve the current water treatment processes and to develop novel nanomaterials for water disinfection. © 2014 Elsevier Ltd.


Wang C.M.,CAS Wuhan Institute of Hydrobiology
Dong wu xue yan jiu = Zoological research / "Dong wu xue yan jiu" bian ji wei yuan hui bian ji | Year: 2011

Historical records and data from yield surveys conducted in 2009 and 2010 were used to investigate macroinvertebrate community succession trends in Dianchi Lake. Species richness has declined from 57 in the 1980s to 32 in 2010, representing a species loss of 44%. Among the major benthic groups, the highest rate of loss was recorded for mollusks (75%) and aquatic insects (39%). Surveys in 2009 and 2010 across the lake revealed that the total density was 1776 ind/m2, comprising oligochaetes (1706 ind/m2) and chironomids (68 ind/m2). Over a nearly twenty-year span (1992-2010), the density and biomass of oligochaetes first increased sharply (1992-2002) and then declined gradually (2002-2010). Further, chironomids have decreased gradually while the proportion of abundant species has increased. Limnodrilus hoffmeisteri became the sole dominant species with an average relative abundance of 74.1%. Cosmopolitan species, such as Einfeldia sp., disappeared across the lake; instead, tolerant species such as Chironomus plumosus, Ch. attenuatus and Tanypus chinensis became the common. Mollusk community structure has become simpler and many native species have gone extinct. Species of concern include Margarya melanioides, M. mondi, M. mansugi and Cipangopaludina dianchiensis, all rated as critically endangered by the IUCN. We found that the Shannon-Wiener index declined in Dianchi Lake, particularly in Caohai Lake, from 2.70 in the 1950s to 0.30 in 2009 and 2010. Species richness and biodiversity was significantly negative correlated with total phosphorus and total nitrogen. Factors responsible for the benthic community retrogression described here include habitat destruction, lowering of water quality, outbreaks of blue-green algae, extinction of submerged plants and lack of germplasm resources.


Fu B.,CAS Wuhan Institute of Hydrobiology | Fu B.,University of Chinese Academy of Sciences | He S.,CAS Wuhan Institute of Hydrobiology
DNA Research | Year: 2012

The silver carp (Hypophthalmichthys molitrix) is among the most intensively pond-cultured fish species and is used in the wild to counteract water bloom in China. However, little genomic information is available for this species, especially regarding its ability to grow rapidly in water, even water contaminated with high concentrations of poisonous microcystin. In this study, we performed de novo transcriptome assembly and analysis of the 17.10 million short-read sequences produced by the Illumina paired-end sequencing technology. Using an improved multiple k-mer contig assembly method coupled with further scaffolding, 85 759 sequences were obtained. There were 23 044 sequences annotated with 3423 gene ontology terms for 104 196 term occurrences and the three corresponding organizing principles. A total of 38 200 assembled sequences were involved in 218 predicted Kyoto Encyclopedia of Genes and Genomes metabolic pathways. We also recovered 41 of 44 genes involved in the biosynthesis of glutathione. Of these, five genes were identified as experienced positive selection between silver carp and zebrafish, as determined by the likelihood ratio test. This report is the first annotated review of the silver carp transcriptome. These data will be of interest to researchers investigating the evolution and biological processes of the silver carp. This work also provides an archive for future studies of recent speciation and evolution of Cyprinidae fishes and can be used in comparative studies of other fishes. © The Author 2012. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

Discover hidden collaborations