CAS South China Sea Institute of Oceanology

Guangzhou, China

CAS South China Sea Institute of Oceanology

Guangzhou, China

Time filter

Source Type

Patent
CAS South China Sea Institute of Oceanology | Date: 2015-12-29

A pop-up monitoring base station for seafloor heat flow includes a recovery unit, a discarding unit and a cable chopping mechanism. The recovery unit includes a recovery support, internally accommodating two acoustic release devices provided with closable hooks on bottoms thereof and loaded with floating balls. The discarding unit includes a discarding support, below which a heat flow probe is fixedly connected. The recovery unit and the discarding unit are fixed together through a steel wire rope with two ends connected with the closable hooks at the bottoms of the acoustic release devices. A cable extends from the discarding unit through the cable chopping mechanism fixed on the bottom of the recovery support and connects with the floating balls. The cable can be chopped off and/or pulled out automatically to realize successful separation between the recovery unit and the discarding unit.


Patent
CAS South China Sea Institute of Oceanology | Date: 2015-06-15

An method for selective breeding of a fast-growing strain of lined seahorse, including: (1) selecting high-quality lined seahorse parents as a base population for selective breeding; (2) performing prenatal intensified breeding; (3) performing pairing and mating, and rearing the juveniles thereof; (4) performing selective breeding in three junctures with different selection proportions; (5) pairing the saved adult lined seahorses, wherein those with low vitality, having injuries on the body surface, or having a dysplastic brood pouch or gonad are culled, and a selection proportion of 10% for every generation is maintained thereafter; (6) repeating steps (2) through (5) for at least four times to obtain a high-quality strain of lined seahorse with improved weight and body length and stable growth. The method can be used for selective breeding of a new strain with high quality and high yield.


Patent
CAS South China Sea Institute of Oceanology | Date: 2015-12-04

The present invention discloses a breeding method for obtaining heterosis in lined seahorses, which comprises the following steps: S1, selecting parents of lined seahorse from populations with great differences in genetic background; S2, intensified rearing the parents before pregnancy; S3, matching and breeding the parents of lined seahorse from different geographical populations according to complete diallel cross method; S4, finely nursing pregnant seahorses; S5, respectively collecting all postlarvae (filial generations) hatched by each breeding group in one week; S6, rearing the filial generations; and S7, comparing survival rate and growth performance of filial generations. The present invention, via hybridization of different geographical populations to obtain lined seahorse, makes effective use of heterosis. Survival rate and growth rate of filial generations are apparently enhanced compared to that of those filial generations without hybridization. Such method enhances genetic diversity of lined seahorses and accelerates breeding of fine strain of lined seahorses.


Patent
CAS South China Sea Institute of Oceanology and Guangdong University of Technology | Date: 2015-02-05

An in-situ and on-line acoustic measuring system for natural gas flux at the hydrocarbon seeps at a seafloor includes a seepage tent and a flow measuring channel. The flow measuring channel includes a lower bubble breaking channel, an ultrasonic transducer measuring channel and an upper bubble breaking channel. The lower bubble breaking channel communicates with the seepage tent provided with bubble breaking grids. Lower and upper bubble breaking devices, arranged in a bubble rising direction, are respectively mounted in the lower and upper bubble breaking channels. One side of the ultrasonic transducer measuring channel is fixedly connected with an acoustic wave demultiplexer, and the other side is fixedly connected with flat receiving transducers receiving transmitting acoustic waves generated by an acoustic wave branching unit. Acoustic wave probes, also used for receiving the transmitting acoustic waves generated by the acoustic wave demultiplexer, are arranged in the ultrasonic transducer measuring channel.


Yu K.F.,CAS South China Sea Institute of Oceanology
Science China Earth Sciences | Year: 2012

This paper reviews both the recent and longer-term (Holocene) ecological history of coral reefs in the South China Sea (SCS). (1) Local ecological monitoring since the 1960s shows that the coral reefs in the South China Sea have declined dramatically, reflecting the rapid decrease of living coral cover and the great loss of symbiotic zooxanthellae. Collectively, this has led to a significant decrease of annual CaCO 3 production. Heavy anthropogenic activities and global warming are recognized as major triggers of the observed coral reef degradation. Observations show that the modern coral reefs in the SCS are a source of atmospheric CO 2 in summer. (2) Coral reefs of the SCS have been widely used to reveal longer-term environmental variations, including Holocene high-resolution sea surface temperature (SST) and abrupt climate events, millennial-scale El Niño variations, millennial- and centennial-scale sea level oscillations, strong and cyclic storm activities, East Asian monsoon intensities, variation in seawater pH, and recent seawater pollution. (3) Coral reefs of the southern SCS have experienced repeated episodes of bleaching over the last 200 years due to high SST and intense El Niño events; coral reefs of the northern SCS suffered high levels of mortality during several abrupt winter cold-water bleaching events during the middle Holocene warm period. On average, recovery after the middle Holocene cold-bleaching took 20-30 years; recovery following other middle Holocene environmental stresses took approximately 10-20 years. Such findings have significantly contributed to the understanding of the present ecological pressures faced by the coral reefs in the SCS, the histories of Holocene climate/environment changes, and the long-term models of coral reef responses to various past environmental changes. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.


Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium). Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.


Patent
CAS South China Sea Institute of Oceanology | Date: 2013-12-30

The invention discloses a new strepsesquitriol A, a preparation method thereof and an application thereof. Strepsesquitriol A, a structure as shown in Formula (I), is a compound having a new skeleton and strongly inhibiting the formation of LPS-induced TNF but showing no cytotoxic activity, so it can be used for the preparation of anti-inflammatory drug or act as a precursor of anti-inflammatory drugs, for the treatment of multiple inflammations. Therefore, the invention provides a new candidate compound for the development of anti-inflammatory drugs, and is of great significance for developing Chinese marine drug resources.


Patent
CAS South China Sea Institute of Oceanology | Date: 2011-09-01

The invention discloses a Pseudonocardia sp. and a method for preparing Deoxynyboquinone by utilizing the same. Pseudonocardia sp. SCSIO 01299 was collected in China Center for Type Culture Collection (CCTCC) (Address: Wuhan University, Wuhan City, China) with the collection number of CCTCC NO: M 2011255 on Jul. 18, 2011. The Pseudonocardia sp. SCSIO 01299 can produce antibiotic Deoxynyboquinone, so that the Pseudonocardia sp. SCSIO 01299 can be utilized for preparing Deoxynyboquinone and a new way is provided for producing antibiotic Deoxynyboquinone with anti-tumor activity.


Patent
CAS South China Sea Institute of Oceanology | Date: 2013-01-24

Provided herein is a bee venom composition with effects of protecting and beautifying lips, comprising cosmetic matrix components for use on lips and bee venom. The bee venom is prepared by using the following method: crude bee venom is dissolved with water, before ultrafiltrated using an ultrafiltration membrane with the molecular weight cutoff 10000 Da, and then the resulting filtrate is freeze-dried to obtain the bee venom.


Patent
CAS South China Sea Institute of Oceanology | Date: 2012-06-18

The invention discloses marine Streptomyces sp., a Pyranosesquiterpene compound, as well as a preparation method and uses thereof. Streptomyces sp. SCSIO 01689 was collected in China Center for Type Culture Collection (CCTCC) (Address: Wuhan University, Wuhan City, China) with the collection number of CCTCC NO: M 2011257 on Jul. 18, 2011. The Streptomyces sp. SCSIO 01689 can produce the Pyranosesquiterpene compound with better anti-Escherichia coli activity and anti-Artemia activity, as well as Cyclo(D)-Pro-(D)-Ile, Cyclo(D)-Pro-(D)-Leu and Cyclo(D)-trans-4-OH-Pro-(D)-Phe with better anti-Vibrio anguillarum activity and anti-Artemia activity, thereby providing a new way for preparing the Cyclo(D)-Pro-(D)-Ile, the Cyclo(D)-Pro-(D)-Leu and the Cyclo(D)-trans-4-OH-Pro-(D)-Phe. The Pyranosesquiterpene compound can be used for preparing anti-Escherichia coli medicaments and anti-Artemia medicaments, as well as preparing condiments as a condiment precursor compound.

Loading CAS South China Sea Institute of Oceanology collaborators
Loading CAS South China Sea Institute of Oceanology collaborators