CAS South China Botanical Garden

Guangzhou, China

CAS South China Botanical Garden

Guangzhou, China
SEARCH FILTERS
Time filter
Source Type

Yu H.,CAS South China Botanical Garden | Compton S.G.,University of Leeds
PLoS ONE | Year: 2012

Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit. We recorded the spatial distributions of galled ovules in mature male figs of the dioecious Ficus hirta in Southern China. The galls contained pollinators and three NPFW that kill them. Pollinators were concentrated in galls located towards the centre of the figs, NPFW towards the periphery. Due to greater pedicel elongation by male galls, male pollinators became located in more central galls than their females, and so were less likely to be attacked. This helps ensure that sufficient males survive, despite strongly female-biased sex ratios, and may be a consequence of the pollinator females laying mostly male eggs at the start of oviposition sequences. © 2012 Yu, Compton.


A recent review concluded that earthworm presence increases CO2 emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO2 emission nor in stabilized carbon would entirely reflect the earthworms' contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon mineralization and carbon stabilization. Earthworms accelerate carbon activation and induce unequal amplification of carbon stabilization compared with carbon mineralization, which generates an earthworm-mediated 'carbon trap'. We introduce the new concept of sequestration quotient to quantify the unequal processes. The patterns of CO2 emission and net carbon sequestration are predictable by comparing sequestration quotient values between treatments with and without earthworms. This study clarifies an ecological mechanism by which earthworms may regulate the terrestrial carbon sink.


Paz-Ferreiro J.,CAS South China Botanical Garden | Fu S.,CAS South China Botanical Garden
Land Degradation and Development | Year: 2013

Soil quality is threatened by the increase in human population and by the fact that most of the cultivable land is intensively used. The initial interest in this topic focused on defining soil quality but shifted into how to measure soil quality in the late 1990s. There is a general agreement that soil biochemical, microbiological and biological properties are more suitable than physical and/or chemical properties for the purpose of estimating alterations in soil quality and hence soil degradation. To date, most studies have used microbial biomass, soil respiration and enzymatic activities to obtain soil quality indices, whereas less focus has been given to soil fauna (microarthropods and nematodes). This article aims to do a critical review of soil quality indices based on soil biological and biochemical activities, mainly microbial biomass, soil respiration and the activity of several enzymes. Limitations within the database of articles that are focussed on broad scale application of soil quality indices include the difficulty of selecting the highest quality soils for comparison purposes, lack of standardisation of analytical methods, and inclusion of an insufficient number of soil types and ecosystems. There is a need to validate soil quality indices, both, spatially and temporally and to explore the use of indices that integrate faunal and microbial measurements. © 2013 John Wiley & Sons, Ltd.


Paz-Ferreiro J.,Technical University of Madrid | Paz-Ferreiro J.,CAS South China Botanical Garden | Fu S.,CAS South China Botanical Garden
Land Degradation and Development | Year: 2016

Soil quality is threatened by the increase in human population and by the fact that most of the cultivable land is intensively used. The initial interest in this topic focused on defining soil quality but shifted into how to measure soil quality in the late 1990s. There is a general agreement that soil biochemical, microbiological and biological properties are more suitable than physical and/or chemical properties for the purpose of estimating alterations in soil quality and hence soil degradation. To date, most studies have used microbial biomass, soil respiration and enzymatic activities to obtain soil quality indices, whereas less focus has been given to soil fauna (microarthropods and nematodes). This article aims to do a critical review of soil quality indices based on soil biological and biochemical activities, mainly microbial biomass, soil respiration and the activity of several enzymes. Limitations within the database of articles that are focussed on broad scale application of soil quality indices include the difficulty of selecting the highest quality soils for comparison purposes, lack of standardisation of analytical methods, and inclusion of an insufficient number of soil types and ecosystems. There is a need to validate soil quality indices, both, spatially and temporally and to explore the use of indices that integrate faunal and microbial measurements. © 2016 John Wiley & Sons, Ltd.


Yu H.,CAS South China Botanical Garden | Nason J.D.,Iowa State University
New Phytologist | Year: 2013

This study uses a phylogeographic approach to investigate how interspecific interactions in an obligate pollination mutualism enhance or constrain dispersal and the range distributions of species through time. Fifteen populations of Ficus hirta, a bird-dispersed fig pollinated by a species-specific fig wasp, were sampled from Thailand to the northern limits of the tropical forest in China. These populations were assayed for six nuclear microsatellite loci and two intergenic chloroplast DNA sequences. Analyses of range expansion and genetic clustering indicated a relatively slow rate of range expansion from two or more southern glacial refugia. Low nuclear differentiation, combined with high interpopulation differentiation, and phylogeographic structuring of chloroplast variation indicated that seed dispersal has had a greater constraint than obligate interactions with fig wasps on the rate of post-glacial range expansion. This study is the first to investigate the phylogeographic history of a widely distributed southeast Asian tropical plant whose distribution extends to the northern limits of tropical forest habitat in China. It is also the first study of Ficus utilizing molecular data to evaluate whether species-specific pollination is a limitation or an aid to range expansion in response to climate change. © 2012 New Phytologist Trust.


Ow D.W.,CAS South China Botanical Garden
Journal of Integrative Plant Biology | Year: 2011

The current method for combining transgenes into a genome is through the assortment of independent loci, a classical operating system compatible with transgenic traits created by different developers, at different times and/or through different transformation techniques. However, as the number of transgenic loci increases over time, increasingly larger populations are needed to find the rare individual with the desired assortment of transgenic loci along with the non-transgenic elite traits. Introducing a transgene directly into a field cultivar would bypass the need to introgress the engineered trait. However, this necessitates separate transformations into numerous field cultivars, along with the characterization and regulatory approval of each independent transformation event. Reducing the number of segregating transgenic loci could be achieved if multiple traits are introduced at the same time, a preferred option if each of the many traits is new or requires re-engineering. If re-engineering of previously introduced traits is not needed, then appending a new trait to an existing locus would be a rational strategy. The insertion of new DNA at a known locus can be accomplished by site-specific integration, through a host-dependent homology-based process, or a heterologous site-specific recombination system. Here, we discuss gene stacking through the use of site-specific recombinases. © 2011 Institute of Botany, Chinese Academy of Sciences.


Huang H.,CAS South China Botanical Garden
Botanical Journal of the Linnean Society | Year: 2011

China is one of the richest countries for plant diversity with approximately 33000 vascular plant species, ranking second in the world. However, the plant diversity in China is increasingly threatened, with an estimated 4000-5000 plant species being threatened or on the verge of extinction, making China, proportionally, one of the highest priorities for global plant biodiversity conservation. Coming in the face of the current ecological crisis, it is timely that China has launched China's Strategy for Plant Conservation (CSPC). China has increasingly recognized the importance of plant diversity in efforts to conserve and sustainably use its plant diversity. More than 3000 nature reserves have been established, covering approximately 16% of the land surface of China. These natural reserves play important roles in plant conservation, covering more than 85% of types of terrestrial natural ecosystems, 40% of types of natural wetlands, 20% of native forests and 65% of natural communities of vascular plants. Meanwhile, the flora conserved in botanical gardens is also extensive. A recent survey shows that the 10 largest botanical gardens have living collections of 43502 taxa, with a total of 24667 species in ex situ conservation. These provide an important reserve of plant resources for sustainable economic and social development in China. Plant diversity is the basis for bioresources and sustainable utilization. The 21 st century is predicted to be an era of bio-economy driven by advances of bioscience and biotechnology. Bio-economy may become the fourth economy form after agricultural, industrial, and information and information technology economies, having far-reaching impacts on sustainable development in agriculture, forestry, environmental protection, light industry, food supply and health care and other micro-economy aspects. Thus, a strategic and forward vision for conservation of plant diversity and sustainable use of plant resources in the 21 st century is of far-reaching significance for sustainable development of Chinese economy and society. © 2011 The Linnean Society of London.


Patent
CAS South China Botanical Garden | Date: 2012-11-10

A biological reactor with full-wavelength controllable light sources is disclosed. A tank with a top includes a tank cover. A helical agitator of quartz glass inside the tank, and one end of the helical agitator connected with the tank cover. A temperature and pH value sensor inside the tank, and connected with the tank cover. The bottom of the tank is in communication with one end of a fermentation broth outlet pipe which is includes a switch valve, and the other end of the fermentation broth outlet pipe penetrates through the peripheral box. The tank cover includes a medium inlet pipe in communication with the tank, and one end of the medium inlet pipe located out of the tank includes a second sterilizing filter and penetrates through the peripheral box. A side wall of the tank includes a full-wavelength LED device with adjustable wavelength.


Patent
CAS South China Botanical Garden | Date: 2013-07-19

The invention discloses a Dendrobium in vitro crossbreeding method. The method can be used to greatly shorten the maturation period of fruits, to enable a hybrid to bloom in vitro in a short period so as to observe flower shapes and colors, and to cultivate a novel variety, thus accelerating Dendrobium breeding, the first such report internationally. Since in vitro Dendrobium blooms annually, it enables crossbreeding of varieties having different inflorescences in nature. In addition, the medium used at each stage of the invention utilizes Hyponex which has a unique composition and costs little, thus allowing for a high blossoming rate and rapid fruit development. Also, only simple plant tissue culture equipment is required for implementing the invention, thus the entire breeding method is simple and low cost, and provides conditions for cultivating of high-quality Dendrobium varieties.


Patent
CAS South China Botanical Garden | Date: 2015-10-13

A citrus preservative includes 0.05%-0.5% of polyhexamethylene guanidine hydrochloride, 0.05%-0.2% of benzimidazole bactericide, 0.02%-0.15% of polyethenoxy and the balance water.

Loading CAS South China Botanical Garden collaborators
Loading CAS South China Botanical Garden collaborators