Time filter

Source Type

Ma N.,CAS Shenzhen Institutes of Advanced Technology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology | Year: 2013

Nucleic acid molecules can serve as robust ligands for aqueous synthesis of semiconductor nanocrystals or quantum dots (QDs). QD properties including size, morphology, dispersity, emission maximum, and quantum yield are highly dependent on the sequences and structures of nucleic acids used for the synthesis. This synthetic strategy provides a novel facile means of constructing compact, stable, and biofunctionalized QDs in one step, which is of particular interest for a variety of applications such as biosensing, bioimaging, and self-assembly. This article summarizes recent advances in nucleic acid-templated QD synthesis with an emphasis on the nucleic acids-based programing of quantum dots properties. A variety of applications based on DNA-passivated QDs are also discussed. Copyright © 2012 Wiley Periodicals, Inc. Source

Chen Y.,CAS Shenzhen Institutes of Advanced Technology
Lab on a chip | Year: 2012

Single-cell transcriptome contains reliable gene regulatory relationships because gene-gene interactions only happen within a mammalian cell. While the study of gene-gene interactions enables us to understand the molecular mechanism of cellular events and evaluate molecular characteristics of a mammalian cell population, its complexity requires an analysis of a large number of single-cells at various stages. However, many existing microfluidic platforms cannot process single-cells effectively for routine molecular analysis. To address these challenges, we develop an integrated system with individual controller for effective single-cell transcriptome analysis. In this paper, we report an integrated microfluidic approach to rapidly measure gene expression in individual cells for genetic stability assessment of a cell population. Inside this integrated microfluidic device, the cells are individually manipulated and isolated in an array using micro sieve structures, then transferred into different nanoliter reaction chambers for parallel processing of single-cell transcriptome analysis. This device enables us to manipulate individual single-cells into nanoliter reactor with high recovery rate. We have performed gene expression analysis for a large number of HeLa cells and 293T cells expanded from a single-cell. Our data shows that even the house-keeping genes are expressed at heterogeneous levels within a clone of cells. The heterogeneity of actin expression reflects the genetic stability, and the expression distribution is different between cancer cells (HeLa) and immortalized 293T cells. The result demonstrates that this platform has the potential for assessment of genetic stability in cancer diagnosis. Source

Zhang L.-F.,CAS Shenzhen Institutes of Advanced Technology | Zhang C.-Y.,CAS Shenzhen Institutes of Advanced Technology
Nanoscale | Year: 2014

Ultrathin nanosheets possess novel electronic structures and physical properties as compared with their corresponding bulk samples. However, the controlled synthesis of ultrathin monolayer nanosheets still remains a great challenge due to the lack of an intrinsic driving force for anisotropic growth of two-dimensional (2D) structures. Here we demonstrate, for the first time to our knowledge, the in situ synthesis of large-scale ultrathin single-crystalline Co0.85Se nanosheets on graphene oxide (GO) sheets, with a thickness of 3 nm. Owing to the synergetic chemical coupling effects between GO and Co0.85Se, the Co0.85Se/graphene hybrid nanosheets exhibit the highest catalytic performance among the available cobalt chalcogenide-based catalysts for the oxygen reduction reaction (ORR). Moreover, Co 0.85Se/graphene hybrid nanosheets can catalyze the decomposition of hydrazine hydrate rapidly, with 97% of hydrazine hydrate being degraded in 12 min and the degradation rate remaining constant over 10 consecutive cycles, thus having great potential as long-term catalysts in wastewater treatment. © 2013 The Royal Society of Chemistry. Source

Zhang Z.-Z.,CAS Shenzhen Institutes of Advanced Technology | Zhang C.-Y.,CAS Shenzhen Institutes of Advanced Technology
Analytical Chemistry | Year: 2012

Highly sensitive detection of proteins is essential to biomedical research as well as clinical diagnosis. However, so far most detection methods rely on antibody-based assays and are usually laborious and time-consuming with poor sensitivity. Here, we develop a simple and sensitive method for the detection of a biomarker protein, platelet-derived growth factor BB (PDGF-BB), based on aptamer-based target-triggering two-stage amplification. With the involvement of an aptamer-based probe and an exponential amplification reaction (EXPAR) template, our method combines strand displacement amplification (SDA) and EXPAR, transforming the probe conformational change induced by target binding into two-stage amplification and distinct fluorescence signal. This detection method exhibits excellent specificity and high sensitivity with a detection limit of 9.04 × 10 -13 M and a detection range of more than 5 orders of magnitude, which is comparable with or even superior to most currently used approaches for PDGF-BB detection. Moreover, this detection method has significant advantages of isothermal conditions required, simple and rapid without multiple separation and washing steps, low-cost without the need of any labeled DNA probes. Furthermore, this method might be extended to sensitive detection of a variety of biomolecules whose aptamers undergo similar conformational changes. © 2011 American Chemical Society. Source

Cao A.,CAS Shenzhen Institutes of Advanced Technology | Zhang C.-Y.,CAS Shenzhen Institutes of Advanced Technology
Analytical Chemistry | Year: 2012

Sensitive and specific detection of DNA methylation in CpG sites of genomic DNA is imperative for rapid epigenetic evaluation and early cancer diagnosis. Here, we employ for the first time the thermostable ligation for methylated DNA discrimination and hyperbranched rolling circle amplification (HRCA) for signal enhancement, without the need for restriction enzymes, PCR amplification, or fluorescence-labeled probes. After bisulfite treatment of methylated DNA, the methylation-specific linear padlock probe can be circularized only in the presence of methylated DNA and serves subsequently as a template for HRCA, whose products are easily detected using SYBR Green I and a standard fluorometer. While in the presence of unmethylated DNA, the linear padlock probe cannot be circularized because of the defectively matched substrate, and no HRCA occurs. This ligation-mediated HRCA-based method exhibits excellent specificity and high sensitivity with a detection limit of 0.8 fM and a detection range of 4 orders of magnitude, and it can even distinguish as low as 0.01% methylation level from the mixture, which is superior to most currently used methods for DNA methylation assay. This method can be further applied to analyze genomic DNA in human lung cancer cells. © 2012 American Chemical Society. Source

Discover hidden collaborations