Time filter

Source Type

Dang H.,CAS Shanghai Institute of Technical Physics
Cryogenics | Year: 2012

A high-capacity single-stage coaxial pulse tube cryocooler operating at around 60 K has been developed to provide the appropriate cooling for the next-generation very-large-scale long wave infrared focal plane arrays under development. The application background and cooler design process are described, and the performance characteristics are presented. At present, the cooler typically provides 4.06 W at 60 K with the input power of 180 W at 300 K reject temperature. 4.72 W can also be achieved when the input power increases to 200 W, and over 9.4% of Carnot efficiency at 60 K has been realized. The larger pulse tube diameter of 14.2 mm is used and the evident orientation sensitivity is observed in the range of 55-65 Hz. The experiments also observe the obvious reject temperature dependence. © 2012 Elsevier Ltd. All rights reserved. Source

Dang H.,CAS Shanghai Institute of Technical Physics
Cryogenics | Year: 2012

Several 40 K single-stage coaxial high frequency pulse tube cryocoolers (PTCs) have been developed to provide reliable and low-noise cooling for GaAs/AlGaAs Quantum-Well infrared photodetectors (QWIPs). The inertance tubes together with the gas reservoir become the only phase shifter to guarantee the required long-term stability. The mixed regenerator consisting of three segments has been developed to enhance the overall regenerator performance. At present, the cooler prototype has achieved a no-load temperature of 29.7 K and can typically provide 860 mW cooling at 40 K with 200 W electric input power rejecting at 300 K. The performance characteristics such as the temperature stability and ambient temperature adaptability are also presented. © 2012 Elsevier Ltd. All rights reserved. Source

Tong Q.,CAS Institute of Remote Sensing | Xue Y.,CAS Shanghai Institute of Technical Physics | Zhang L.,CAS Institute of Remote Sensing
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | Year: 2014

This paper reviews progress in hyperspectral remote sensing (HRS) in China, focusing on the past three decades. China has made great achievements since starting in this promising field in the early 1980s. A series of advanced hyperspectral imaging systems ranging from ground to airborne and satellite platforms have been designed, built, and operated. These include the field imaging spectrometer system (FISS), the Modular Airborne Imaging Spectrometer (MAIS), and the Chang'E-I Interferometer Spectrometer (IIM). In addition to developing sensors, Chinese scientists have proposed various novel image processing techniques. Applications of hyperspectral imaging in China have been also performed including mineral exploration in the Qilian Mountains and oil exploration in Xinjiang province. To promote the development of HRS, many generic and professional software tools have been developed. These tools such as the Hyperspectral Image Processing and Analysis System (HIPAS) incorporate a number of special algorithms and features designed to take advantage of the wealth of information contained in HRS data, allowing them to meet the demands of both common users and researchers in the scientific community. © 2013 IEEE. Source

Sun Z.,CAS Institute of Automation | Zhang H.,CAS Institute of Software | Tan T.,CAS Institute of Automation | Wang J.,CAS Shanghai Institute of Technical Physics
IEEE Transactions on Pattern Analysis and Machine Intelligence | Year: 2014

Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection. © 2013 IEEE. Source

Liu M.,Anhui University | Li G.,Anhui University | Chen X.,CAS Shanghai Institute of Technical Physics
ACS Applied Materials and Interfaces | Year: 2014

Spongelike CuInS2 3D microspheres were synthesized through a solvothermal method employing CuCl, InCl3, and thiourea as Cu, In, and S sources, respectively, and PVP as surfactant. The as-prepared products have regular spherical shapes with diameters of 0.8-3.7 μm, the spheres consisted of small nanosheets, which are composed of small nanoparticles. As an important solar cell material, its photovoltaic property was also tested and the results showed a solar energy conversion efficiency of 3.31%. With the help of reduced graphene, its conversion efficiency could be further increased to 6.18%. Compared with conventional Pt material used in counter electrodes of solar cells, this new material has an advantages of low-cost, facile synthesis and high efficiency with graphene assistance. © 2014 American Chemical Society. Source

Discover hidden collaborations