CAS Shanghai Institute of Technical Physics

Shanghai, China

CAS Shanghai Institute of Technical Physics

Shanghai, China
SEARCH FILTERS
Time filter
Source Type

Zhang S.,Beijing University of Technology | Zhang S.,Collaborative Fusion | Zhang S.,Virginia Commonwealth University | Zhou J.,Virginia Commonwealth University | And 7 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2015

A 2D metastable carbon allotrope, penta-graphene, composed entirely of carbon pentagons and resembling the Cairo pentagonal tiling, is proposed. State-of-the-art theoretical calculations confirm that the new carbon polymorph is not only dynamically and mechanically stable, but also can withstand temperatures as high as 1000 K. Due to its unique atomic configuration, penta-graphene has an unusual negative Poisson's ratio and ultrahigh ideal strength that can even outperform graphene. Furthermore, unlike graphene that needs to be functionalized for opening a band gap, penta-graphene possesses an intrinsic quasi-direct band gap as large as 3.25 eV, close to that of ZnO and GaN. Equally important, penta-graphene can be exfoliated from T12-carbon. When rolled up, it can form pentagon-based nanotubes which are semiconducting, regardless of their chirality. When stacked in different patterns, stable 3D twin structures of T12-carbon are generated with band gaps even larger than that of T12-carbon. The versatility of penta-graphene and its derivatives are expected to have broad applications in nanoelectronics and nanomechanics.


Zhang S.,Beijing University of Technology | Wang Q.,Beijing University of Technology | Wang Q.,Virginia Commonwealth University | Chen X.,CAS Shanghai Institute of Technical Physics | Jena P.,Beijing University of Technology
Proceedings of the National Academy of Sciences of the United States of America | Year: 2013

Design and synthesis of 3D metallic carbon that is stable under ambient conditions has been a long-standing dream. We predict the existence of such phases, T6- and T14-carbon, consisting of interlocking hexagons. Their dynamic, mechanical, and thermal stabilities are confirmed by carrying out a variety of state-of-theart theoretical calculations. Unlike the previously studied K4 and the simple cubic high pressure metallic phases, the structures predicted in this work are stable under ambient conditions. Equally important, they may be synthesized chemically by using benzene or polyacenes molecules.


Sun Z.,CAS Institute of Automation | Zhang H.,CAS Institute of Software | Tan T.,CAS Institute of Automation | Wang J.,CAS Shanghai Institute of Technical Physics
IEEE Transactions on Pattern Analysis and Machine Intelligence | Year: 2014

Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection. © 2013 IEEE.


Dang H.,CAS Shanghai Institute of Technical Physics
Cryogenics | Year: 2012

A high-capacity single-stage coaxial pulse tube cryocooler operating at around 60 K has been developed to provide the appropriate cooling for the next-generation very-large-scale long wave infrared focal plane arrays under development. The application background and cooler design process are described, and the performance characteristics are presented. At present, the cooler typically provides 4.06 W at 60 K with the input power of 180 W at 300 K reject temperature. 4.72 W can also be achieved when the input power increases to 200 W, and over 9.4% of Carnot efficiency at 60 K has been realized. The larger pulse tube diameter of 14.2 mm is used and the evident orientation sensitivity is observed in the range of 55-65 Hz. The experiments also observe the obvious reject temperature dependence. © 2012 Elsevier Ltd. All rights reserved.


Dang H.,CAS Shanghai Institute of Technical Physics
Cryogenics | Year: 2012

Several 40 K single-stage coaxial high frequency pulse tube cryocoolers (PTCs) have been developed to provide reliable and low-noise cooling for GaAs/AlGaAs Quantum-Well infrared photodetectors (QWIPs). The inertance tubes together with the gas reservoir become the only phase shifter to guarantee the required long-term stability. The mixed regenerator consisting of three segments has been developed to enhance the overall regenerator performance. At present, the cooler prototype has achieved a no-load temperature of 29.7 K and can typically provide 860 mW cooling at 40 K with 200 W electric input power rejecting at 300 K. The performance characteristics such as the temperature stability and ambient temperature adaptability are also presented. © 2012 Elsevier Ltd. All rights reserved.


Dang H.,CAS Shanghai Institute of Technical Physics
Cryogenics | Year: 2015

This paper presents a review of the recent development of moving-coil linear compressors for space Stirling-type pulse tube cryocoolers in National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences. The design, manufacture and assembly methods are described with special emphases laid on linear motor, clearance seal, flexure springs, dual-opposed configuration and flexible design. Several key components are focused on and studied in a detailed way in terms of material selection, geometry design, configuration optimization, manufacture approaches and optimal assembly to achieve high efficiency, easy producibility, high reliability and long life. Experiences from the forerunners and the state-of-the-art approaches are reviewed and used for useful references, while our own successful experiences are emphasized and discussed in more detail together with some lessons learned. A series of compressors for space applications have been worked out with high confidence of reliability and long life expectation, which achieve input capacities of 0-500 W with motor efficiencies of 74.2-83.6%. Single-stage pulse tube cryocoolers driven by these compressors have already covered the temperature range of 25-200 K with cooling capacities varying from milliwatt levels to over 30 W. The commonly-used compressor types and purposes, performance characteristics and their applications in typical space cryocooler projects are also presented. © 2015 Elsevier Ltd All rights reserved.


Li G.,Anhui University | Chen X.,CAS Shanghai Institute of Technical Physics | Gao G.,Nankai University
Nanoscale | Year: 2014

In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm-2, Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures. This journal is © The Royal Society of Chemistry.


Lu X.,CAS Shanghai Institute of Technical Physics
Applied Physics Letters | Year: 2010

Boundary scattering phonon mean free path (MFP) is an important parameter for thermal conductivity calculation of nanocomposites. In this work, a simple approximate model is proposed to predict boundary/interface scattering MFP and thermal conductivity of nanowire heterostructures (NWHSs) based on Casimir formalism. Calculated thermal conductivities of Si tubular nanowires and Si/Ge NWHSs agree well with the numerical and analytical solutions of Boltzmann transport equation. It is demonstrated that core/shell layer thickness plays a significant role on tuning NWHS thermal conductivity. The results indicate the approximate model of thermal conductivity can be used for quickly evaluating the thermal behavior of nanocomposites. © 2010 American Institute of Physics.


He G.,Anhui University | Chen X.,CAS Shanghai Institute of Technical Physics | Sun Z.,Anhui University
Surface Science Reports | Year: 2013

Recently, III-V materials have been extensively studied as potential candidates for post-Si complementary metal-oxide-semiconductor (CMOS) channel materials. The main obstacle to implement III-V compound semiconductors for CMOS applications is the lack of high quality and thermodynamically stable insulators with low interface trap densities. Due to their excellent thermal stability and relatively high dielectric constants, Hf-based high-k gate dielectrics have been recently highlighted as the most promising high-k dielectrics for III-V-based devices. This paper provides an overview of interface engineering and chemistry of Hf-based high-k dielectrics on III-V substrates. We begin with a survey of methods developed for generating Hf-based high-k gate dielectrics. To address the impact of these hafnium based materials, their interfaces with GaAs as well as a variety of semiconductors are discussed. After that, the integration issues are highlighted, including the development of high-k deposition without Fermi level pinning, surface passivation and interface state, and integration of novel device structure with Si technology. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of Hf-based gate dielectrics on the current and future applications for nano-MOSFET devices. © 2013 Elsevier B.V.


Dang H.,CAS Shanghai Institute of Technical Physics
AIP Conference Proceedings | Year: 2012

This paper reviews recent advances in high frequency pulse tube cryocoolers developed in SITP/CAS to provide high reliability, low-noise and long life cooling for potential space applications. The advances in understanding the cooler mechanism and minimizing irreversible losses in various components are described, which have made a great contribution to the improved efficiencies. At present, the operating temperatures cover from 30 K to 200 K and the cooling capacities vary from hundreds of milliwatts to over 20 W to meet a variety of requirements. Some typical cryocooler development programs are introduced and a brief overview of the updated data package is presented. The proposed applications, design approaches, research advances, the major problems and the efforts to overcome them are described. © 2012 American Institute of Physics.

Loading CAS Shanghai Institute of Technical Physics collaborators
Loading CAS Shanghai Institute of Technical Physics collaborators