Time filter

Source Type

Patent
Shanghai Micro Electronics Equipment Co., CAS Shanghai Institute of Optics and fine Mechanics | Date: 2014-01-10

Four-axis four-subdividing interferometer comprising a four-axis light splitting module and an interference module which are sequentially arranged along the incident direction of polarization orthogonal double-frequency laser. The four-axis light splitting system comprises three 50% plane beam splitters and three 45-degree plane reflecting mirrors. The invention comprises a four-axis four-subdividing plane mirror interferometer and a four-axis four-subdividing differential interferometer. In the differential interferometer, an adjustable 45-degree reflecting minor is used to guide the reference light to a reference reflecting minor which is arranged in the same direction as a measurement minor and fixed on the moving object.


Patent
Shanghai Micro Electronics Equipment Co., CAS Shanghai Institute of Optics and fine Mechanics | Date: 2014-01-10

Six-axis four-subdividing interferometer comprising a six-axis light splitting system and an interference module which are sequentially arranged along the incident direction of polarization orthogonal double-frequency laser, wherein the six-axis light splitting system comprises five 45-degree plane beam splitters and four 45-degree full-reflecting minors.


Sugioka K.,RIKEN | Cheng Y.,CAS Shanghai Institute of Optics and fine Mechanics
Light: Science and Applications | Year: 2014

The unique characteristics of ultrafast lasers, such as picosecond and femtosecond lasers, have opened up new avenues in materials processing that employ ultrashort pulse widths and extremely high peak intensities. Thus, ultrafast lasers are currently used widely for both fundamental research and practical applications. This review describes the characteristics of ultrafast laser processing and the recent advancements and applications of both surface and volume processing. Surface processing includes micromachining, micro-and nanostructuring, and nanoablation, while volume processing includes two-photon polymerization and three-dimensional (3D) processing within transparent materials. Commercial and industrial applications of ultrafast laser processing are also introduced, and a summary of the technology with future outlooks are also given. © 2014 CIOMP.


Liu L.,CAS Shanghai Institute of Optics and fine Mechanics
Applied Optics | Year: 2013

This paper reviews our studies on coherent and incoherent synthetic-aperture imaging ladars (SAILs). Using optical diffraction, a systematic theory of side-looking SAIL was mathematically formulated and the necessary conditions for assuring a correct phase history are established. Based on optical transformation and regulation of wavefront, a down-looking SAIL of two distinctive architectures was invented and the basic principle, systematic theory, design equations, and necessary conditions are presented. An incoherent spotlight-mode SAIL was proposed, and detailed mathematically. To validate the concepts, laboratory experiments were conducted. The spatially and temporally dependent laser speckles are analyzed by applying the partial coherence theorem, and proposals to reduce their effect are given. Optical antennas and their components are discussed. It is shown that for down-looking SAIL the width of the scanning strip may be greatly increased without loss of high resolution, and the influences from atmospheric turbulence and unmodeled line-of-sight motion can be automatically compensated. © 2013 Optical Society of America.


Patent
CAS Shanghai Institute of Optics and fine Mechanics | Date: 2016-05-11

Illumination system for a lithographic projection exposure step-and-scan apparatus comprising a light source, a pupil shaping unit, a field defining unit, a first lens array, a first slit array, a second lens array, a third lens array, a second slit array, a fourth lens array, a condenser lens, and a scanning drive unit sequentially arranged along the light beam propagation direction. The illumination system reduces requirements on lens processing, slit scanning speed, and slit scanning precision, therefore may be implemented more easily.


Patent
CAS Shanghai Institute of Optics and fine Mechanics | Date: 2013-02-27

A detection apparatus and method for testing optical performance of beam shaping element used in ultraviolet lithography machine; The apparatus comprises visible wavelength laser and other optical units placed along the optical axis including, in order from laser side, (a) beam expander lens group, (b) beam splitter, (c) first far field imaging lens, (d) adjustable aperture or (e) CCD image sensor, (f) second far field imaging lens and (g) energy sensor. The detection apparatus is suitable be employed to detect the optical performance of beam shaping element working at any ultraviolet band, and provides the features of low cost, easy operation and quick measurement.


Patent
CAS Shanghai Institute of Optics and fine Mechanics | Date: 2015-12-02

A lithography illumination system, along the transmission direction of the laser light, successively comprising a laser light source, a collimating and expanding unit, a pupil shaping unit, a first micro-lens array, a micro-integrator rod array, a micro-scanning slit array, a second micro-lens array, a condenser lens group, a mask, and and a motion control unit for controlling the motion of the micro scanning slit array.


Patent
CAS Shanghai Institute of Optics and fine Mechanics | Date: 2015-04-22

The invention discloses a device and a method for measuring phase retardation distribution and fast axis azimuth angle distribution of a birefringence sample in real time. The device comprises a collimating light source, a circular polarizer, a diffractive beam-splitting component, a quarter-wave plate, an analyzer array, a charge coupled device (CCD) image sensor and a computer with an image acquisition card. The method can measure the phase retardation distribution and the fast axis azimuth angle distribution of the birefringence sample in real time and has large measurement range. The measurement result is immune to the light-intensity fluctuation of the light source.


Patent
CAS Shanghai Institute of Optics and fine Mechanics | Date: 2016-01-27

A lithography pupil shaping optical system and method for generating off-axis illumination mode are disclosed. The invention is composed of an illumination mode generation unit, a rotatable wave plate, a polarization beam splitter unit, a ring I generation unit and a ring II generation unit. Through selecting corresponding diffractive optical element and appropriate adjustment, this invention can generate various illumination modes including single ring illumination modes and double rings illumination modes. The intensity at the pupil plane and the inner and outer diameters of the off-axis illumination mode can be adjusted continuously.


Patent
CAS Shanghai Institute of Optics and fine Mechanics | Date: 2016-05-25

An illumination device comprising a laser source, a beam expander, a micromirror array having a first control system, a fast steering mirror having a second control system, a diaphragm array, a microlens array, an illumination lens group, and a reflection mirror sequentially along the propagation direction of the laser beam. The first control system comprises a first computer controlling each micromirror on the micro-mirror array through the micromirror array controller to rotate in two-dimensional directions so expanded beam forms desired intensity patterns on the diaphragm array after reflected by the micromirror array and fast reflection mirror and a micromirror array controller; the second control system comprises a second computer controlling the reflection mirror of the fast steering mirror to rotate through fast steering mirror controller so created intensity pattern moves relative to the diaphragm array and a fast steering mirror controller. Method for using the illumination device is provided.

Loading CAS Shanghai Institute of Optics and fine Mechanics collaborators
Loading CAS Shanghai Institute of Optics and fine Mechanics collaborators