Time filter

Source Type

Song B.,CAS Shanghai Institute of Ceramics
Journal of biomedical materials research. Part B, Applied biomaterials | Year: 2012

Co-delivery of several drugs has been regarded as an alternative strategy for achieving enhanced therapeutic effect. In this study, a co-delivery system based on the electrospun poly(lactic-co-glycolic acid) (PLGA)/mesoporous silica nanoparticles (MSNs) composite mat was designed for the co-encapsulation and prolonged release of one hydrophilic and one hydrophobic drug simultaneously. MSNs were chosen to load the hydrophobic model drug fluorescein (FLU) and hydrophilic model drug rhodamine B (RHB), respectively (named as RHB-loaded MSNs and FLU-loaded MSNs). Two kinds of drug-loaded MSNs were incorporated into the polymer matrix to form a fibrous structure by blending electrospinning. The effect of the weight ratios for the two kinds of drug-loaded MSNs and the initial PLGA concentrations on the drug release kinetics were systematically investigated. The results showed that both model drugs RHB and FLU maintained sustained delivery with controllable release kinetics during the releasing period, and the release kinetics was closely dependent on the loading ratios of two drug-loaded MSNs and the initial PLGA concentrations in the composite mats. The results suggest that the co-drug delivery system may be used for wound dressing that requires the combined therapy of several kinds of drugs. Copyright © 2012 Wiley Periodicals, Inc. Source

Li Y.,East China University of Science and Technology | Shi J.,East China University of Science and Technology | Shi J.,CAS Shanghai Institute of Ceramics
Advanced Materials | Year: 2014

Hollow-structured mesoporous materials (HMMs), as a kind of mesoporous material with unique morphology, have been of great interest in the past decade because of the subtle combination of the hollow architecture with the mesoporous nanostructure. Benefitting from the merits of low density, large void space, large specific surface area, and, especially, the good biocompatibility, HMMs present promising application prospects in various fields, such as adsorption and storage, confined catalysis when catalytically active species are incorporated in the core and/or shell, controlled drug release, targeted drug delivery, and simultaneous diagnosis and therapy of cancers when the surface and/or core of the HMMs are functionalized with functional ligands and/or nanoparticles, and so on. In this review, recent progress in the design, synthesis, functionalization, and applications of hollow mesoporous materials are discussed. Two main synthetic strategies, soft-templating and hard-templating routes, are broadly sorted and described in detail. Progress in the main application aspects of HMMs, such as adsorption and storage, catalysis, and biomedicine, are also discussed in detail in this article, in terms of the unique features of the combined large void space in the core and the mesoporous network in the shell. Functionalization of the core and pore/outer surfaces with functional organic groups and/or nanoparticles, and their performance, are summarized in this article. Finally, an outlook of their prospects and challenges in terms of their controlled synthesis and scaled application is presented. Hollow-structured mesoporous materials (HMMs), a type of mesoporous material with a unique morphology, present promising application prospects in the fields of storage, adsorption and separation, confined catalysis, controlled drug release, and simultaneous diagnosis and therapy of cancers, owing to the subtle combination of the hollow architecture with the mesoporous nanostructure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Shi J.,CAS Shanghai Institute of Ceramics | Shi J.,East China University of Science and Technology | Shi J.,CAS Institute of Process Engineering
Chemical Reviews | Year: 2013

The heterogeneous catalytic performance is largely dependent on the catalyst nanostructures or, in another word, processing technologies, in addition to the intrinsic physical and chemical properties of the constitutive components. Compared to the amorphous framework of mesoporous silica, mesoporous metal oxides synthesized by a hard templatereplicating method usually have a crystallized structure and exhibit excellent catalytic activities, as reported in many documents. The loading or dispersion of catalytically active guest species into the host mesopore network results in mesostructured composites of a crystallized framework and highly dispersed catalytic species in its mesopore network. Mesoporous inorganic oxide materials, in the form of either powder or thin film, with high surface areas, ordered pore structures, finely tunable pore sizes, and flexible wallcompositions have been investigated widely of their chemical synthesis and potential applications in catalysis, adsorption, chemical sensing, electrochemistry, biomedical areas, and so on. Source

Zhu Y.-J.,CAS Shanghai Institute of Ceramics | Chen F.,CAS Shanghai Institute of Ceramics
Chemical Reviews | Year: 2014

Microwaves are the electromagnetic waves with frequencies ranging from 0.3 to 300 GHz and with wavelengths of between 1 mm and 1 m, which are between infrared and radio frequency waves in the electromagnetic spectrum. The commonly used frequency in laboratories and homes for microwave heating is 2.45 GHz. Nowadays, more laboratories of materials science as well as organic and pharmaceutical chemical laboratories have been equipped with microwave reactors. Many early publications on microwave-assisted synthesis were carried out in household microwave ovens, and experimental parameters like microwave power, reaction temperature, and pressure inside the vessel were not precisely known in household microwave ovens. These uncertainties led to poor control over the synthesis and a lack of reproducibility of experiments. Source

He Q.,CAS Shanghai Institute of Ceramics | He Q.,University of Leeds | Shi J.,CAS Shanghai Institute of Ceramics
Advanced Materials | Year: 2014

In the anti-cancer war, there are three main obstacles resulting in high mortality and recurrence rate of cancers: the severe toxic side effect of anti-cancer drugs to normal tissues due to the lack of tumor-selectivity, the multi-drug resistance (MDR) to free chemotherapeutic drugs and the deadly metastases of cancer cells. The development of state-of-art nanomedicines based on mesoporous silica nanoparticles (MSNs) is expected to overcome the above three main obstacles. In the view of the fast development of anti-cancer strategy, this review highlights the most recent advances of MSN anti-cancer nanomedicines in enhancing chemotherapeutic efficacy, overcoming the MDR and inhibiting metastasis. Furthermore, we give an outlook of the future development of MSNs-based anti-cancer nanomedicines, and propose several innovative and forward-looking anti-cancer strategies, including tumor tissue-cell-nuclear successionally targeted drug delivery strategy, tumor cell-selective nuclear-targeted drug delivery strategy, multi-targeting and multi-drug strategy, chemo-/radio-/photodynamic-/ultrasound-/thermo-combined multi-modal therapy by virtue of functionalized hollow/rattle-structured MSNs. Anti-cancer nanomedicine: mesoporous silica nanoparticle (MSN) nanomedicines functionalized with targeting, burst responsive, and payload units, as well as a stealth coating, can enhance the chemotherapeutic efficacy and lower toxic side effects by tumor/cell membrane/nuclear-targeted drug delivery and pH/redox/protease- responsive drug release. Moreover, MSN nanomedicines overcome multi-drug resistance by the multi-drug synergy strategy, the effluxcircumventing strategy, and the multimodal combination therapy strategy, and inhibit tumor metastasis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Discover hidden collaborations