Entity

Time filter

Source Type


Wang Z.-T.,CAS Lanzhou Cold and Arid Regions Environmental and Engineering Research Institute
Science of the Total Environment | Year: 2016

The effects of electric force were used to interpret a well known conundrum about the long-term (or long-distance) dust transport in the atmosphere. © 2016 Elsevier B.V. Source


Nevo E.,Haifa University | Chen G.,CAS Lanzhou Cold and Arid Regions Environmental and Engineering Research Institute
Plant, Cell and Environment | Year: 2010

Drought and salinity are the major abiotic stresses that dramatically threaten the food supply in the world. Tribe Triticeae, including wheat and barley, possesses tremendous potential for drought and salt tolerance that has been extensively and practically identified, tested, and transferred to wheat cultivars with proven expression of tolerance in experimental trials. Triticum dicoccoides and Hordeum spontaneum, the progenitors of cultivated wheat and barley, have adapted to a broad range of environments and developed rich genetic diversities for drought and salt tolerances. Drought- and salt-tolerant genes and quantitative trait loci (QTLs) have been identified in T. dicoccoides and H. spontaneum and have great potential in wheat and barley improvement. Advanced backcross QTL analysis, the introgression libraries based on wild wheat and wild barley as donors, and positional cloning of natural QTLs will play prevailing roles in elucidating the molecular control of drought and salt tolerance. Combining tolerant genes and QTLs in crop breeding programs aimed at improving tolerance to drought and salinity will be achieved within a multidisciplinary context. Wild genetic resistances to drought and salinity will be shifted in the future from field experiments to the farmer. © 2010 Blackwell Publishing Ltd. Source


Li X.,CAS Lanzhou Cold and Arid Regions Environmental and Engineering Research Institute
Science China Earth Sciences | Year: 2014

Uncertainty is one of the greatest challenges in the quantitative understanding of land-surface systems. This paper discusses the sources of uncertainty in land-surface systems and the possible means to reduce and control this uncertainty. From the perspective of model simulation, the primary source of uncertainty is the high heterogeneity of parameters, state variables, and near-surface atmospheric states. From the perspective of observation, we first utilize the concept of representativeness error to unify the errors caused by scale representativeness. The representativeness error also originates mainly from spatial heterogeneity. With the aim of controlling and reducing uncertainties, here we demonstrate the significance of integrating modeling and observations as they are complementary and propose to treat complex land-surface systems with a stochastic perspective. In addition, through the description of two modern methods of data assimilation, we delineate how data assimilation characterizes and controls uncertainties by maximally integrating modeling and observational information, thereby enhancing the predictability and observability of the system. We suggest that the next-generation modeling should depict the statistical distribution of dynamic systems and that the observations should capture spatial heterogeneity and quantify the representativeness error of observations. © 2013, Science China Press and Springer-Verlag Berlin Heidelberg. Source


Wang X.M.,CAS Lanzhou Cold and Arid Regions Environmental and Engineering Research Institute
Chinese Science Bulletin | Year: 2013

Sandy desertification is both an inherently interesting bioscience and geoscience topic and an important topic from the perspectives of the ecological environment and food security. It has therefore increasingly attracted the attention of the public, in addition to researchers, government officials, and international organizations. This paper reviews the development of knowledge on sandy desertification, research progress in understanding the physical and biological processes involved in sandy desertification, and the significance of wind activity in determining the increases and decreases in sandy desertification. Based on this review of current research on the mechanisms and processes of sandy desertification, combining geological and biological sciences appears likely to improve our understanding of this complex system, thereby providing a more holistic understanding of sandy desertification at a range of temporal and spatial scales. © 2013 The Author(s). Source


Gao Y.,CAS Lanzhou Cold and Arid Regions Environmental and Engineering Research Institute | Cuo L.,CAS Institute of Tibetan Plateau Research | Zhang Y.,U.S. National Center for Atmospheric Research
Journal of Climate | Year: 2014

Changes in moisture as represented by P - E (precipitation 2 evapotranspiration) and the possible causes over the Tibetan Plateau (TP) during 1979-2011 are examined based on the Global Land Data Assimilation Systems (GLDAS) ensemble mean runoff and reanalyses. It is found that the TP is getting wetter as a whole but with large spatial variations. The climatologically humid southeastern TP is getting drier while the vast arid and semiarid northwestern TP is getting wetter. The Clausius-Clapeyron relation cannot be used to explain the changes in P - E over the TP. Through decomposing the changes in P - E into three major components-dynamic, thermodynamic, and transient eddy components-it is noted that the dynamic component plays a key role in the changes of P - E over the TP. The thermodynamic component contributes positively over the southern and central TP whereas the transient eddy component tends to reinforce (offset) the dynamic component over the southern and parts of the northern TP (central TP). Seasonally, the dynamic component contributes substantially to changes in P - E during the wet season, with small contributions from the thermodynamic and transient eddy components. Further analyses reveal the poleward shift of the East Asian westerly jet stream by 0.7° and poleward moisture transport as well as the intensification of the summer monsoon circulation due to global warming, which are shown to be responsible for the general wetting trend over the TP. It is further demonstrated that changes in local circulations that occur due to the differential heating of the TP and its surroundings are responsible for the spatially varying changes in moisture over the TP. © 2014 American Meteorological Society. Source

Discover hidden collaborations