Entity

Time filter

Source Type


Pei Y.,CAS Institute of Semiconductors
Physica B: Condensed Matter | Year: 2012

The influences of strain to the energetic and electronic properties of graphdiyne are investigated based on first-principles calculations. The elastic parameters of graphdiyne are determined by total energy calculation. Compared to graphyne, graphdiyne is softer because it has less C-C bonds. Moreover, the band gap of graphdiyne is tunable under uniform strain. It monotonously increases with increasing strain value, which originates from the decreased orbital overlap between C atoms when strain increases. © © 2012 Elsevier B.V. All rights reserved. Source


Wu Z.,CAS Institute of Semiconductors
Applied Physics Letters | Year: 2011

We investigate theoretically the transmission properties through a p-n-p junction on graphene. Here, we show that the electronic transport property presents deep analogies with light propagation. It originates from the similarity between the linear spectra of the Dirac fermions and photons that obey the Maxwell's equations. We demonstrate that the p-n-p channel acts as an electronic fiber in which electrons propagate along the channel without dissipation. © 2011 American Institute of Physics. Source


Ge/Si heterojunction light emitting diodes with 20-bilayers undoped or phosphorus in situ doped GeSi islands were fabricated on n(+)(-)Si(001) substrates by ultrahigh vacuum chemical vapor deposition (UHV-CVD). Enhanced room temperature photoluminescence (PL) and electroluminescence (EL) around 1.5 μm were observed from the devices with phosphorus-doped GeSi islands. Theoretical calculations indicated that the emission is from the radiative recombination in GeSi islands. The intensity enhancement of PL and EL is attributed to the sufficient supply of electrons in active layer for radiative recombination. Source


Patent
CAS Institute of Semiconductors | Date: 2012-12-13

A 3D package device of a photonic integrated chip matching circuit, comprising: a first carrier substrate; a first microwave transmission line array formed by evaporation on the top surface of the first carrier substrate to provide bias voltages and high-frequency modulation signals to the photonic integrated chip; a second carrier substrate formed perpendicularly to the first carrier substrate or to have a certain angle with respect to the first carrier substrate, so as to constitute a 3D structure; a second microwave transmission line array formed by evaporation on the bottom surface of the second carrier substrate to match electrodes of the first microwave transmission line array, the second microwave transmission line array being soldered or sintered with the electrodes of the first microwave transmission line array; an electrode array formed by evaporation on a side surface or two opposite side surfaces of the second carrier substrate; and a microwave circuit.


Patent
CAS Institute of Semiconductors | Date: 2014-03-21

A method can include: growing a Ge layer on a Si substrate; growing a low-temperature nucleation GaAs layer, a high-temperature GaAs layer, a semi-insulating InGaP layer and a GaAs cap layer sequentially on the Ge layer after a first annealing, forming a sample; polishing the samples GaAs cap layer, and growing an nMOSFET structure after a second annealing on the sample; performing selective ICP etching on a surface of the nMOSFET structure to form a groove, and growing a SiO

Discover hidden collaborations