Time filter

Source Type

Xia Q.,Southwest University | Li S.,CAS Institute of Plant Physiology and Ecology | Feng Q.,South China Normal University
Annual Review of Entomology | Year: 2014

Significant progress has been achieved in silkworm (Bombyx mori) research since the last review on this insect was published in this journal in 2005. In this article, we review the new and exciting progress and discoveries that have been made in B. mori during the past 10 years, which include the construction of a fine genome sequence and a genetic variation map, the evolution of genomes, the advent of functional genomics, the genetic basis of silk production, metamorphic development, immune response, and the advances in genetic manipulation. These advances, which were accelerated by the genome sequencing project, have promoted B. mori as a model organism not only for lepidopterans but also for general biology. © Copyright ©2014 by Annual Reviews.All rights reserved.


Huang X.,CAS Institute of Plant Physiology and Ecology | Han B.,CAS Institute of Plant Physiology and Ecology
Nature Genetics | Year: 2012

Three new studies report large-scale resequencing and comparative genomic analysis of diverse maize varieties. The authors conducted a comprehensive characterization of sequence variation in maize genomes and identified signals of selection in maize domestication and breeding. © 2012 Nature America, Inc. All rights reserved.


Wang W.,CAS Institute of Plant Physiology and Ecology
Plant physiology | Year: 2011

During leaf development, the formation of leaf adaxial-abaxial polarity at the primordium stage is crucial for subsequent leaf expansion. However, little is known about the genetic control from polarity establishment to blade outgrowth. The leaf margin, comprising elongated margin cells and hydathodes, is thought to affect leaf expansion. Here, we show that mutants with defective leaf polarity or with loss of function in the multiple auxin-biosynthetic YUCCA (YUC) genes exhibited a similar abnormal leaf margin and less-expanded leaves. Leaf margins of these mutants contained fewer hydathodes and an increased number of cell patches in which the patterns of epidermal cells resembled those of hydathodes. The previously characterized leaf-abaxialized asymmetric leaves2 (as2) revoluta (rev) and leaf-adaxialized kanadi1 (kan1) kan2 double mutants both produce finger-shaped, hydathode-like protrusions on adaxial and abaxial leaf surfaces, respectively. YUCs are required for formation of the protrusions, as those produced by as2 rev and kan1 kan2 were absent in the yuc1 yuc2 yuc4 triple mutant background. Expressions of YUC1, YUC2, and YUC4 were spatially regulated in the leaf, being associated with hydathodes in wild-type leaves and protrusions on as2 rev and kan1 kan2 leaves. In addition, inhibition of auxin transport by treatment of seedlings with N-(1-naphtyl) phtalamic acid or disruption of the auxin gradient by transforming plants with the 35S:YUC1 construct also blocked leaf margin development. Collectively, our data show that expressions of YUCs in the leaf respond to the adaxial-abaxial juxtaposition, and that the activities of auxin mediate leaf margin development, which subsequently promotes blade outgrowth.


Zhang P.,CAS Institute of Plant Physiology and Ecology
Trends in Microbiology | Year: 2013

Energy-coupling factor (ECF) transporters form a new family of ATP-binding cassette (ABC) transporters and are widely used by prokaryotes to take up micronutrients from the environment. Instead of using the periplasmic solute-binding proteins (SBPs), ECF transporters use the membrane S proteins for substrate capture and translocation. In this review, we will focus on structural advances that have been made regarding how substrates are recognized by ECF transporters and possible transport mechanisms employed by the ECF transporters. © 2013 Elsevier Ltd.


Yao H.-Y.,CAS Institute of Plant Physiology and Ecology | Xue H.-W.,CAS Institute of Plant Physiology and Ecology
Current Opinion in Plant Biology | Year: 2011

Vesicular trafficking is mediated by distinct exocytic and endocytic routes in eukaryotic cells. These pathways involve RAB family proteins, ADP-ribosylation factor, RHO proteins of the Ras superfamily, and SNAREs (soluble N-ethylmaleimide-sensitive factor adaptors). Studies have shown that vesicular trafficking plays a crucial role in protein localization and movement, signal transduction, and multiple developmental processes. Here we summarize the role of vesicular trafficking in root and root hair growth and in auxin-mediated root development, focusing on the regulation of the polarized subcellular distribution of the PIN proteins (auxin efflux carriers). © 2011 Elsevier Ltd.


Fu X.-Y.,CAS Institute of Plant Physiology and Ecology
Applied Microbiology and Biotechnology | Year: 2010

Extracellular accumulation of recombinant proteins in the culture medium of Escherichia coli is desirable but difficult to obtain. The inner or cytoplasmic membrane and the outer membrane of E. coli are two barriers for releasing recombinant proteins expressed in the cytoplasm into the culture medium. Even if recombinant proteins have been exported into the periplasm, a space between the outer membrane and the inner membrane, the outer membrane remains the last barrier for their extracellular release. However, when E. coli was cultured in a particular defined medium, recombinant proteins exported into the periplasm could diffuse into the culture medium automatically. If a nonionic detergent, Triton X-100, was added in the medium, recombinant proteins expressed in the cytoplasm could also be released into the culture medium. It was then that extracellular accumulation of recombinant proteins could be obtained by exporting them into the periplasm or releasing them from the cytoplasm with Triton X-100 addition. The tactics described herein provided simple and valuable methods for achieving extracellular production of recombinant proteins in E. coli. © 2010 Springer-Verlag.


Gao L.-L.,CAS Institute of Plant Physiology and Ecology | Xue H.-W.,CAS Institute of Plant Physiology and Ecology
Molecular Plant | Year: 2012

The receptor-like kinases (RLKs) play critical roles in plant development and response to stress stimuli. By perceiving or sensing the extracellular signals, RLK activates the downstream signaling pathway through phosphorylating the specific targets. Up to now, only a few RLKs have been functionally identified, which are even fewer in rice (Oryza sativa L.). We here report the systemic analysis of the expression profiles of rice RLK coding genes in different tissues, with the emphasis on seed development and in response to both abiotic stress and plant hormones. The results showed that most rice RLK genes are expressed in two or more tissues, of which the RLCK-RLKs have a higher, while WAK- and SD-RLKs have a lower, expression level in the vegetative tissues than other subfamily members. Interestingly, the constitutively highly expressed RLKs in rice and Arabidopsis are conserved, which is consistent with the previous hypothesis that RLKs existed before the differentiation of monocotyledon and dicotyledon plants. Nearly one-third of the detected rice RLKs are expressed during seed development, and the RLCK-RLK members possess a higher percentage during the endosperm development, suggesting a novel function of RLCK-RLK members in endosperm development. Further analysis revealed that many RLK genes expressed during seed development are also regulated by abiotic stresses (cold, salt, or drought) or hormones, indicating that RLKs may take part in the stress-related signaling pathways such as dehydration of endosperm. These results provide informative insights into the RLK studies and will be helpful to reveal the global regulatory network controlling rice seed development. © 2011 The Author.


Dai C.,CAS Institute of Plant Physiology and Ecology | Xue H.-W.,CAS Institute of Plant Physiology and Ecology
EMBO Journal | Year: 2010

The plant hormone gibberellin (GA) is crucial for multiple aspects of plant growth and development. To study the relevant regulatory mechanisms, we isolated a rice mutant earlier flowering1, el1, which is deficient in a casein kinase I that has critical roles in both plants and animals. el1 had an enhanced GA response, consistent with the suppression of EL1 expression by exogenous GA 3. Biochemical characterization showed that EL1 specifically phosphorylates the rice DELLA protein SLR1, proving a direct evidence for SLR1 phosphorylation. Overexpression of SLR1 in wild-type plants caused a severe dwarf phenotype, which was significantly suppressed by EL1 deficiency, indicating the negative effect of SLR1 on GA signalling requires the EL1 function. Further studies showed that the phosphorylation of SLR1 is important for maintaining its activity and stability, and mutation of the candidate phosphorylation site of SLR1 results in the altered GA signalling. This study shows EL1 a novel and key regulator of the GA response and provided important clues on casein kinase I activities in GA signalling and plant development. © 2010 European Molecular Biology Organization.


Huang X.,CAS Institute of Plant Physiology and Ecology | Han B.,CAS Institute of Plant Physiology and Ecology
Annual Review of Plant Biology | Year: 2014

Natural variants of crops are generated from wild progenitor plants under both natural and human selection. Diverse crops that are able to adapt to various environmental conditions are valuable resources for crop improvements to meet the food demands of the increasing human population. With the completion of reference genome sequences, the advent of high-throughput sequencing technology now enables rapid and accurate resequencing of a large number of crop genomes to detect the genetic basis of phenotypic variations in crops. Comprehensive maps of genome variations facilitate genome-wide association studies of complex traits and functional investigations of evolutionary changes in crops. These advances will greatly accelerate studies on crop designs via genomics-assisted breeding. Here, we first discuss crop genome studies and describe the development of sequencing-based genotyping and genome-wide association studies in crops. We then review sequencing-based crop domestication studies and offer a perspective on genomics-driven crop designs. Copyright © 2014 by Annual Reviews.


Xu L.,CAS Institute of Plant Physiology and Ecology | Huang H.,CAS Institute of Plant Physiology and Ecology
Current Topics in Developmental Biology | Year: 2014

Plants have evolved powerful regeneration abilities to recover from damage. Studies on plant regeneration are of high significance as the underlying mechanisms of plant regeneration are not only linking to the fundamental researches in many fields but also to the development of widely used plant biotechnology. Higher plants show three main types of regeneration: tissue regeneration, de novo organogenesis, and somatic embryogenesis. In this review, we summarize recent research on plant regeneration, mainly focusing on Arabidopsis thaliana and moss. New data suggest that plant hormones trigger regeneration and that several key transcription factors respond to hormone signals to determine cell-fate transition. Cell-fate transition requires genome-wide changes in gene expression, which are regulated via epigenetic pathways. Certain epigenetic factors may be recruited by transcription factors to relocate to new loci and regulate gene expression. Cross talk among hormone signaling, transcription factors, and epigenetic factors is involved in different types of plant regeneration, suggesting that elegant and complex regulatory mechanisms control which type of regeneration is triggered in plants under different circumstances. Since regeneration is initiated by wounding, identification of the wound signal is an important objective for future research. © 2014 Elsevier Inc.

Loading CAS Institute of Plant Physiology and Ecology collaborators
Loading CAS Institute of Plant Physiology and Ecology collaborators