CAS Institute of Microelectronics

Beijing, China

CAS Institute of Microelectronics

Beijing, China

Time filter

Source Type

Patent
CAS Institute of Microelectronics | Date: 2014-08-01

A method for manufacturing a FinFET device, including providing a substrate; implementing a source/drain doping on the substrate; etching the doped substrate to form a source region and a drain region; forming a fin channel between the source region and the drain region; and forming a gate on the Fin channel. The fin and the gate are formed after the source/drain doping is implemented on the substrate, so that the source/drain doping is done as a doping for a planar device, which ensures the quality of the source/drain coping and improves the property of the FinFET device.


Patent
CAS Institute of Microelectronics and Jiangnan University | Date: 2016-06-06

A method for preparing a TiAl alloy thin film, wherein a reaction chamber is provided, in which at least one substrate is placed; an aluminum precursor and a titanium precursor are introduced into the reaction chamber, wherein the aluminum precursor has a molecular structure of a structural formula (I); and the aluminum precursor and the titanium precursor are brought into contact with the substrate so that a titanium-aluminum alloy thin film is formed on the surface of the substrate by vapor deposition. The method solves the problem of poor step coverage ability and the problem of incomplete filling with regard to the small-size devices by the conventional methods. Meanwhile, the formation of titanium-aluminum alloy thin films with the aid of plasma is avoided so that the substrate is not damaged by plasma.


Provided are a CMOS device having a charged punch-through stopper (PTS) layer to reduce punch-through and a method of manufacturing the same. In an embodiment, the CMOS semiconductor device includes an n-type device and a p-type device. The n-type device and the p-type device each may include: a fin structure formed on a substrate; an isolation layer formed on the substrate, wherein a portion of the fin structure above the isolation layer acts as a fin of the n-type device or the p-type device; a charged PTS layer formed on side walls of a portion of the fin structure beneath the fin; and a gate stack formed on the isolation layer and intersecting the fin. For the n-type device, the PTS layer has net negative charges, and for the p-type device, the PTS layer has net positive charges.


Provided are a semiconductor device having a charged punch-through stopper (PTS) layer to reduce punch-through and a method of manufacturing the same. In an embodiment, the semiconductor device may include a fin structure formed on a substrate; an isolation layer formed on the substrate, wherein a portion of the fin structure above the isolation layer acts as a fin of the semiconductor device; a charged PTS layer formed on side walls of a portion of the fin structure beneath the fin; and a gate stack formed on the isolation layer and intersecting the fin. The semiconductor device may be an n-type device or a p-type device. For the n-type device, the PTS layer may have net negative charges, and for the p-type device, the PTS layer may have net positive charges.


Patent
CAS Institute of Microelectronics | Date: 2016-10-25

A GaN-based enhancement-mode power electronic device and a method for manufacturing the same. The GaN-based enhancement-mode power electronic device comprises: a substrate; a thin barrier Al(In,Ga)N/GaN heterostructure formed on the substrate; a gate, a source, and a drain formed on the thin barrier Al(In,Ga)N/GaN heterostructure. An AlN or SiNx passivation layer is formed on access regions between the gate and the source and between the gate and the drain, respectively, such that two dimensional electron gas is recovered in channels of the thin barrier Al(In,Ga)N/GaN heterostructure below the MN passivation layer by utilizing the MN passivation layer having polarization characteristics, or by using the SiNx passivation layer with positive fixed bulk/interface charges, so as to reduce on-resistance of the device and inhibit high-voltage current collapse in the device.


Patent
CAS Institute of Microelectronics | Date: 2017-02-03

Semiconductor devices and methods for manufacturing the same are provided. An example method may include: forming a sacrificial gate stack on a substrate; forming a gate spacer on sidewalls of the sacrificial gate stack; forming an interlayer dielectric layer on the substrate and planarizing it to expose the sacrificial gate stack; partially etching back the sacrificial gate stack to form an opening; expanding the resultant opening so that the opening is in a shape whose size gradually increases from a side adjacent to the substrate towards an opposite side away from the substrate; and removing a remaining portion of the sacrificial gate stack and forming a gate stack in a space defined by the gate spacer.


Patent
CAS Institute of Microelectronics | Date: 2016-03-03

A low-damage etching method for a III-Nitride structure is disclosed. The method comprises: forming an etching mask on the III-Nitride structure, which is formed on a substrate; and etching the III-Nitride with the etching mask, wherein a temperature of the substrate changes dynamically or is kept at a constant temperature point between 200 C. and 700 C. during the etching.


A semiconductor device with a high-quality epitaxial layer and a method of manufacturing the same. The semiconductor device may include: a substrate; a fin-shaped first semiconductor layer spaced apart from the substrate; a second semiconductor layer at least partially surrounding a periphery of the first semiconductor layer; an isolation layer formed on the substrate, exposing at least a part of the second semiconductor layer, wherein the exposed part of the second semiconductor layer extends in a fin shape; and a gate stack formed on the isolation layer and intersecting the second semiconductor layer.


There are provided a nanometer semiconductor device with a high-quality epitaxial layer and a method of manufacturing the same. According to an embodiment, the semiconductor device may include: a substrate; at least one nanowire spaced apart from the substrate; at least one semiconductor layer, each formed around a periphery of respective one of the at least one nanowire to at least partially surround the corresponding nanowire, wherein the semiconductor layer(s) formed around the respective nanowire(s) are separated from each other; an isolation layer formed on the substrate, exposing the at least one semiconductor layer; and a gate stack formed on the isolation layer and intersecting the at least one semiconductor layer, wherein the gate stack includes a gate dielectric layer at least partially surrounding a periphery of respective one of the at least one semiconductor layer and a gate conductor layer.


Patent
CAS Institute of Microelectronics | Date: 2016-10-20

The invention discloses a novel dry etching method, which comprises the following steps: forming a to-be-etched layer on a semiconductor substrate; forming a masking material on the to-be-etched layer; carrying out dry etching on the masking material and the to-be-etched layer; simultaneously carrying out lateral etching (parallel to the surface of the substrate) of a masking layer and longitudinal etching (vertical to the surface of the substrate) of the to-be-etched layer; and obtaining the inclination angle (the included angle between a slope surface and the surface of the substrate) of the corresponding etched slope surface by accurately controlling the speed ratio. The method can flexibly adjust the inclination angle of the etched slope surface within a large range (0-90 degrees), and especially has advantages in the field of the application with a small inclination angle (smaller than 20 degrees) of the etched slope surface in comparison with a conventional etching method.

Loading CAS Institute of Microelectronics collaborators
Loading CAS Institute of Microelectronics collaborators