CAS Institute of Microbiology

Beijing, China

CAS Institute of Microbiology

Beijing, China
SEARCH FILTERS
Time filter
Source Type

Patent
CAS Institute of Microbiology | Date: 2017-08-09

Aromatic farnesyl compound and application of a pharmaceutical salt thereof as an inhibitor of -glucosidase, dipeptidyl peptidase-4, aldose reductase, protein tyrosine phosphatase-1B or HMG-CoA reductase, or use thereof in preparing medicine and functional healthcare products having a liver protective function and/or for treating and/or preventing type II diabetes, diabetic retinopathy, diabetic foot disease, and hyperlipidemia.


The present invention discloses an E. coli engineering bacteria producing 1,5-pentanediamine through a whole cell catalysis and its application. The engineering bacteria according to the present invention, is Escherichia coli (E. coli) strain B or its derivative strains with the overexpression of a lysine decarboxylase gene and a proper expression of a lysine-cadaverine antiporter gene cadB. The engineering bacteria according to the present invention is the engineering bacteria producing 1,5-pentanediamine through the whole cell catalysis constructed from Escherichia coli B derivative strains, which has an overexpression of a lysine decarboxylase gene cadA and a proper expression of the lysine-cadaverine antiporter gene cadB. The present invention further discloses a method of producing a 1,5-pentanediamine catalyzed by the engineering bacteria, the yield and production intensity of 1,5-pentanediamine in bio-based production could be significantly improved through the method, hence it could be applied to mass production and convenient for extending applications.


Patent
CAS Institute of Microbiology | Date: 2015-12-18

Aromatic farnesyl compound and application of a pharmaceutical salt thereof as an inhibitor of -glucosidase, dipeptidyl peptidase-4, aldose reductase, protein tyrosine phosphatase-1B or HMG-CoA reductase, or use thereof in preparing medicine and functional healthcare products having a liver protective function and/or for treating and/or preventing type II diabetes, diabetic retinopathy, diabetic foot disease, and hyperlipidemia.


Provided are engineered Escherichia coli for producing 1,5-pentanediamine by whole-cell catalysis and an application thereof. The engineered bacterium is engineered bacterium, for whole-cell catalysis of 1,5-pentanediamine, constructed by over-expressing a lysine decarboxylase gene cadA and meanwhile moderately expressing a lysine-pentanediamine reverse transport protein gene cadB in an Escherichia coli B derivative strain. Also provided is a method for producing 1,5-pentanediamine by catalysis using the engineered bacterium.


Baldrian P.,CAS Institute of Microbiology
FEMS Microbiology Reviews | Year: 2017

Globally, forests represent highly productive ecosystems that act as carbon sinks where soil organic matter is formed from residuals after biomass decomposition as well as from rhizodeposited carbon. Forests exhibit a high level of spatial heterogeneity and the importance of trees, the dominant primary producers, for their structure and functioning. Fungi, bacteria and archaea inhabit various forest habitats: foliage, the wood of living trees, the bark surface, ground vegetation, roots and the rhizosphere, litter, soil, deadwood, rock surfaces, invertebrates, wetlands or the atmosphere, each of which has its own specific features, such as nutrient availability or temporal dynamicy and specific drivers that affect microbial abundance, the level of dominance of bacteria or fungi as well as the composition of their communities. However, several microorganisms, and in particular fungi, inhabit or even connect multiple habitats, and most ecosystem processes affect multiple habitats. Forests are dynamic on a broad temporal scale with processes ranging from short-term events over seasonal ecosystem dynamics to long-term stand development after disturbances such as fires or insect outbreaks. The understanding of these processes can be only achieved by the exploration of the complex 'ecosystem microbiome' and its functioning using focused, integrative microbiological and ecological research performed across multiple habitats. © FEMS 2016. All rights reserved.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-TP | Phase: KBBE.2012.3.2-01 | Award Amount: 13.29M | Year: 2012

The PharmaSea project focuses on obstacles in marine biodiscovery research, development and commercialization and brings together a broad interdisciplinary team of academic and industry researchers and specialists to address and overcome these. The partners are ideally placed to demonstrate how to widen the bottlenecks and increase the flow of ideas and products derived from the marine microbiome towards a greater number of successes in a larger number of application areas. Despite the tremendous potential of marine biodiscovery, exploitation, particularly at a commercial scale, has been hampered by a number of constraints. These relate to access (physical and legal), genetics of the organisms, compound isolation, structure elucidation, early reliable validation of biological activity and best mechanisms of flow-through into exploitation. PharmaSea will solve these chronic bottlenecks by developing essential actions beyond the state of the art and linking them with best practice and appropriate pragmatic approaches. The robust pipeline structure established within PharmaSea will process a wide genetic basis including marine microbial strain collections held by partners and new strain collections from extreme environments (deep, cold and hot vent habitats) to produce new products with desirable characteristics for development by the SME partners in three accessible market sectors, health (infection, inflammation, CNS diseases), personal care and nutrition. The global aim of PharmaSea is to produce two compounds at larger scale and advance them to pre-clinical evaluation. To address relevant challenges in marine biodiscovery related to policy and legal issues, PharmaSea will bring together practitioners, legal experts, policy advisors/makers and other stakeholders, focusing on the feasibility of harmonising, aligning and complementing current legal frameworks with recommendations and ready to use solutions tailored to marine biodiscovery.


The immunosuppressive drug cyclosporin A (CsA) has inhibitory effects on the replication of several viruses. The antiviral effects are through targeting the interaction between viral proteins and host factor cyclophilin A (CypA). CypA has been identified to interact with influenza A virus M1 protein and impair the early stage of the viral life cycle. In order to identify the effect of CsA on influenza virus replication, a CypA-depleted 293T cell line, which was named as 293T/CypA-, was constructed. The cytopathic effect (CPE) assay and the growth curve results indicated that CsA specifically suppressed the influenza A virus replication in a dose-dependent manner. CsA treatment had no effect on the viral genome replication and transcription but selectively suppressed the viral proteins expression. Further studies indicated that CsA could impair the nuclear export of viral mRNA in the absence of CypA. In addition, the antiviral activity of CsA was independent of calcineurin signaling. Finally, CsA could enhance the binding between CypA and M1. The above results suggested that CsA inhibited the replication of influenza A virus through CypA-dependent and -independent pathways.


The present application discloses recombinant bacteria producing L-amino acid(s) its construction method and the method of producing L-amino acid(s). The recombinant bacteria producing L-amino acid(s) according to the present invention has reduced expression of the glucose-6-phosphate isomerase Pgi and improved expression of the glucose-6-phosphate dehydrogenase Zwf-OpcA than the starting bacteria, wherein: said starting bacterium is a bacterial strain which can accumulate target amino acid(s). During fermenting and culturing the recombinant bacteria according to the present invention, it is observed that the effect of improving yield can be additive and the yield of L-amino acid(s) is improved obviously. The strategy of combinational modification according to the present invention develops a new method of improving the yield of L-amino acid(s) and hence it can be applied to produce L-amino acid(s) through bacterial fermentation.


The present application discloses recombinant bacteria producing L-amino acid(s) its construction method and the method of producing L-amino acid(s). The recombinant bacteria producing L-amino acid(s) according to the present invention has reduced expression of the glucose-6-phosphate isomerase Pgi and improved expression of the glucose-6-phosphate dehydrogenase Zwf-OpcA than the starting bacteria, wherein: said starting bacterium is a bacterial strain which can accumulate target amino acid(s). During fermenting and culturing the recombinant bacteria according to the present invention, it is observed that the effect of improving yield can be additive and the yield of L-amino acid(s) is improved obviously. The strategy of combinational modification according to the present invention develops a new method of improving the yield of L-amino acid(s) and hence it can be applied to produce L-amino acid(s) through bacterialfermentation.


The present invention discloses a method for introducing an exogenous DNA by overcoming the restriction modification barrier of the target bacterium. The method provided in the present invention comprises the steps of 1) co-expressing all DNA-methyltransferase-encoding genes in the genome of the target bacterium in E. coli in which the restriction modification system thereof has been deleted to obtain a recombinant bacterium A; 2) introducing an exogenous DNA molecule into the recombinant bacterium A for in vivo modification so as to obtain a methylation-modified exogenous DNA molecule; 3) introducing the methylation-modified exogenous DNA molecule into the target bacterium. The experiments of the invention have demonstrated that the invention has a high transformation efficiency compared to prior methods for enabling genetic manipulation by overcoming the restriction modification barrier of the bacterium.

Loading CAS Institute of Microbiology collaborators
Loading CAS Institute of Microbiology collaborators