Time filter

Source Type

Wei Y.,CAS Institute of Mechanics
Physical Review B - Condensed Matter and Materials Physics | Year: 2011

When materials are deformed plastically via dislocations, a general finding is that samples with smaller dimensions exhibit higher strengths but with very limited amount of plasticity in tension. Here we report that one-dimensional coherent nanostructures with tilted internal twins exhibit anisotropic size effect: their strengths show no apparent change if only their thicknesses reduce, but become stronger as the sample sizes are reduced proportionally. Large-scale molecular dynamics simulations show that such nanowires deform primarily through twin migration mediated by partial dislocations in one active slip system, and a large amount of plasticity could be achieved in such nanowires via twin migration. The unique structure shown here is suitable to explore strengthening mechanisms in metals when plasticity is controlled by a single dislocation slip system. This study also suggests a novel approach to modulate strength and ductility in one-dimensional coherent nanostructures. © 2011 American Physical Society. Source

Liu M.B.,CAS Institute of Mechanics | Liu G.R.,National University of Singapore
Archives of Computational Methods in Engineering | Year: 2010

Smoothed particle hydrodynamics (SPH) is a meshfree particle method based on Lagrangian formulation, and has been widely applied to different areas in engineering and science. This paper presents an overview on the SPH method and its recent developments, including (1) the need for meshfree particle methods, and advantages of SPH, (2) approximation schemes of the conventional SPH method and numerical techniques for deriving SPH formulations for partial differential equations such as the Navier-Stokes (N-S) equations, (3) the role of the smoothing kernel functions and a general approach to construct smoothing kernel functions, (4) kernel and particle consistency for the SPH method, and approaches for restoring particle consistency, (5) several important numerical aspects, and (6) some recent applications of SPH. The paper ends with some concluding remarks. © CIMNE, Barcelona, Spain 2010. Source

Zhu Y.T.,North Carolina State University | Liao X.Z.,University of Sydney | Wu X.L.,CAS Institute of Mechanics
Progress in Materials Science | Year: 2012

Nanocrystalline (nc) materials can be defined as solids with grain sizes in the range of 1-100 nm. Contrary to coarse-grained metals, which become more difficult to twin with decreasing grain size, nanocrystalline face-centered-cubic (fcc) metals become easier to twin with decreasing grain size, reaching a maximum twinning probability, and then become more difficult to twin when the grain size decreases further, i.e. exhibiting an inverse grain-size effect on twinning. Molecular dynamics simulations and experimental observations have revealed that the mechanisms of deformation twinning in nanocrystalline metals are different from those in their coarse-grained counterparts. Consequently, there are several types of deformation twins that are observed in nanocrystalline materials, but not in coarse-grained metals. It has also been reported that deformation twinning can be utilized to enhance the strength and ductility of nanocrystalline materials. This paper reviews all aspects of deformation twinning in nanocrystalline metals, including deformation twins observed by molecular dynamics simulations and experiments, twinning mechanisms, factors affecting the twinning, analytical models on the nucleation and growth of deformation twins, interactions between twins and dislocations, and the effects of twins on mechanical and other properties. It is the authors' intention for this review paper to serve not only as a valuable reference for researchers in the field of nanocrystalline metals and alloys, but also as a textbook for the education of graduate students. © 2011 Elsevier Ltd. All rights reserved. Source

Yi X.,Brown University | Shi X.,CAS Institute of Mechanics | Gao H.,Brown University
Nano Letters | Year: 2014

Understanding cell interaction with one-dimensional nanomaterials, including nanotubes, nanowires, nanofibers, filamentous bacteria, and certain nanoparticle chains, has fundamental importance to many applications such as biomedical diagnostics, therapeutics, and nanotoxicity. Here we show that cell uptake of one-dimensional nanomaterials via receptor-mediated endocytosis is dominated by a single dimensionless parameter that scales with the membrane tension and radius of the nanomaterial and inversely with the membrane bending stiffness. It is shown that as cell membrane internalizes one-dimensional nanomaterials the uptake follows a near-perpendicular entry mode at small membrane tension but it switches to a near-parallel interaction mode at large membrane tension. © 2014 American Chemical Society. Source

Apparatus and methods for detecting wave front aberration of a projection objective lens in a photolithography machine are disclosed. The apparatus comprises: a light source system configured to generate an illuminating beam; a spatial filter configured to receive the illuminating beam and generate ideal spherical wave; a splitter plate arranged downstream to the spatial filter at a predetermined angle with respect to an optical axis of the spherical wave and having a transflective film being applied on a surface thereof; the projection objective lens configured to receive a beam from the splitter plate and generate an output beam; a spherical mirror configured to reflect the output beam from the projection objective lens to the projection objective lens, light passing through the projection objective lens being reflected by the splitter plate; and an interferometer configured to receive light reflected by the splitter plate and measure the wave front aberration of the projection objective lens.

Discover hidden collaborations