Millbrook, NY, United States
Millbrook, NY, United States

The Cary Institute of Ecosystem Studies , formerly known as the Institute of Ecosystem Studies, is an independent, not-for-profit environmental research organization dedicated to the scientific study of the world’s ecosystems and the natural and human factors that influence them. Research is communicated in scholarly publications for scientific peers, educational programs for students and public audiences, and focused outreach to elected officials, policy makers, and the media.Located in Millbrook, New York , at the 2,000-acre Mary Flagler Cary Arboretum, the Cary Institute has about 120 employees, of which about 20 are scientists with Ph.D.’s in ecology and allied fields. While the Cary Institute is not itself a degree-granting institution, numerous graduate students are trained under the mentorship of the scientific staff who have adjunct appointments at many universities. The Cary Institute has hosted research experiences for undergraduates since 1987.The Cary Institute is organized as a 501c3 corporation with financial support from multiple sources which include the Mary Flagler Charitable Trust, research and education grants from federal and state sources , private foundations, and private donors. Wikipedia.

Time filter

Source Type

News Article | April 8, 2017

Ticks pose a major threat — especially during the warmer months — as humans and pets venture out more, which results in a greater possibility of bringing these insects home. However, experts anticipate 2017 will be a particularly risky year for Lyme infestation. The epidemic may see an upsurge, especially in the Northeastern areas of the United States, during spring and summer. Researchers Felicia Keesing and her husband Richard Ostfeld state that the risk of Lyme disease has increased substantially this year. The heightened risk is being attributed to the massive growth of acorn crops in forests during fall 2015. Ostfeld, is a well-known ecologist at the Cary Institute of Ecosystem Studies, and has been researching on Lyme disease for more than 20 years. Keesing, in collaboration with her husband, co-directs research revolving around local spread of Lyme disease. "The reason we're more at risk this year is because in the fall of 2015 there was a huge crop of acorns in our forests, which happens every 2 to 5 years," explained Keesing. She further added that the growth of acorns led to an increase in the population of Lyme-infected mice the following summer, which in turn resulted in the increase in Lyme disease in 2016. Both Keesing and Ostfeld can now predict Lyme cases a year in advance. They do so by observing the changes in the mice count in the prior year. The number of infected mice that dwell in the forest in summer correlate to the Lyme cases, which will occur in the subsequent year's summer season. Mice unknowingly have become highly efficient transmitters of Lyme disease. Roughly 95 percent of ticks that feed on mice are infected, and these rodents are to be blamed for spreading the infection to a majority of ticks carrying Lyme in the Northeastern regions. "An individual mouse might have 50, 60, even 100 ticks covering its ears and face," says Ostfeld. Interestingly, a mouse plague took place in 2016 in the areas upstate of New York. Based on this fact, researchers are now expecting a Lyme epidemic in the warmer months of 2017. However, they haven't been able to pinpoint the areas that will be the most susceptible to the epidemic. If Lyme disease is left untreated or goes undiagnosed, the illness can lead to permanent nerve and circulatory problems. According to the researchers, May and June will be risky months and it is advisable that people are suitably prepared before venturing outside. Ostfeld and Keesing both caution people to be aware of teenaged ticks as it is difficult to notice them, thanks to their size. A teenaged tick is as big as a flake of grounded black pepper. Individuals at risk are advised to wear light-colored clothes to detect the ticks easily. It is advisable to wear protective clothing such as long pants instead of shorts, to safeguard oneself from the ticks. The ticks are generally found on the surface of the clothing, from knee down. Keesing states that the absence of ticks on clothes does not mean that they have not come into contact with the body. It is better to give the body a thorough check before taking a shower to be absolutely sure for tick bites. It is also advisable to use a repellent and avoid walking in dense foliage areas. © 2017 Tech Times, All rights reserved. Do not reproduce without permission.

Ostfeld R.S.,Cary Institute of Ecosystem Studies | Keesing F.,Cary Institute of Ecosystem Studies | Keesing F.,Bard College
Annual Review of Ecology, Evolution, and Systematics | Year: 2012

The dynamics of Infectious diseases can be affected by genetic diversity within host populations, species diversity within host communities, and diversity among communities. In principle, diversity can either increase or decrease pathogen transmission and disease risk. Theoretical models and laboratory experiments have demonstrated that a dilution effect (decreased disease risk with increasing diversity) can occur under a wide range of conditions. Field studies of plants, aquatic invertebrates, amphibians, birds, and mammals demonstrate that the phenomenon indeed does occur in many natural systems. A dilution effect is expected when (a) hosts differ in quality for pathogens or vectors; (b) higher quality hosts tend to occur in species-poor communities, whereas lower quality hosts tend to occur in more diverse communities; and (c) lower quality hosts regulate abundance of high-quality hosts or of vectors, or reduce encounter rates between these hosts and pathogens or vectors. Although these conditions characterize many disease systems, our ability to predict when and where the dilution effect occurs remains poor. The life-history traits that cause some hosts to be widespread and resilient might be correlated with those that promote Infection and transmission by some pathogens, supporting the notion that the dilution effect might be widespread among disease systems. Criticisms of the dilution effect have focused on whether species richness or species composition (both being metrics of biodiversity) drives disease risk. It is well established, however, that changes in species composition correlate with changes in species richness, and this correlation could explain why the dilution effect appears to be a general phenomenon. © 2012 by Annual Reviews. All rights reserved.

Strayer D.L.,Cary Institute of Ecosystem Studies
Hydrobiologia | Year: 2014

Nutrient loads and nutrient cycling, especially of phosphorus and nitrogen, are among the most important controls on the character of freshwater ecosystems and have been greatly affected by human actions. Despite the widespread importance of nutrients in freshwater ecosystems, the varied linkages between nutrient cycling and freshwater mussel populations have not been thoroughly described. Here, I explore three of these linkages. First, I suggest that nutrient loads are related to the well-being of mussel populations through several mechanisms, probably producing a nonlinear and non-monotonic relationship between nutrient loads and mussel populations. Second, I discuss the ability of mussels to spatially focus nutrients from the overlying water onto the sediments, which has not been fully appreciated, perhaps because nutrient cycling has been viewed chiefly from the viewpoint of the well-mixed water column rather than the patchy sediments. Third, I discuss the ability of mussel populations to accumulate and release nutrients, introducing time lags into nutrient dynamics and stoichiometry ("nutrient capacitance"). Finally, I propose a speculative analysis of the role of freshwater mussels in the nutrient cycles of pristine river systems, which must have been much greater than in modern rivers, with their high nutrient loads and depleted mussel populations. © 2013 Springer Science+Business Media Dordrecht.

Lovett G.M.,Cary Institute of Ecosystem Studies
Annals of the New York Academy of Sciences | Year: 2013

Repeated invasions of non-native insects and pathogens have altered the structure and function of forest ecosystems in the Catskill Mountains of New York State, and will continue to do so in the future. Gypsy moth, beech bark disease, and hemlock woolly adelgid are among the insects and diseases currently established in the Catskills that are having significant effects on forests. Many others, including emerald ash borer, Asian long-horned beetle, Phytophthora ramorum, and Sirex wood wasp, are either very recently established in the Catskills or have been found elsewhere in North America and threaten to spread to this region. Short-term disturbances associated with these pests include reduction of productivity, tree decline and mortality, disruption of nutrient cycles, and reduction of seed production. Longer-term impacts are associated with shifts in tree species composition that alter productivity, nutrient cycling, and biodiversity. Catskill forests at mid to high elevations, such as the New York State Forest Preserve lands, are dominated by sugar maple and are particularly vulnerable to pests that use maple as a host, including the Asian long-horned beetle. The simultaneous effects of multiple invading insects and pathogens, and their interactions with changing climate and air pollution regimes, make it very difficult to predict the future composition of Catskill forests. © 2013 New York Academy of Sciences.

Likens G.E.,Cary Institute of Ecosystem Studies
Frontiers in Ecology and the Environment | Year: 2010

To guide environmental policy effectively, scientists face the difficult but crucial task of clearly communicating evidence-based information to the public and to policy makers. Frequently, the solutions proposed by scientists are hindered by poor communication - including an excessive reliance on acronyms and jargon - as well as being confronted by vested interests, both perceived and real. Although environmental "problems" are typically discovered by scientists, it is the media that often plays the primary role in promoting public awareness of - and political action regarding - such problems. Here, acid rain is used as a case study to illustrate many of the challenges commonly associated with environmental problems, including the long delay between initial discovery and relevant policy making. Some simple, straightforward recommendations are provided for facilitating communication about environmental problems. © The Ecological Society of America.

Jones C.G.,Cary Institute of Ecosystem Studies
Geomorphology | Year: 2012

Biogeomorphologists study the roles of biota in landscape formation and decay. Ecologists interested in ecosystem engineering study environmental change caused by biota and the consequences for the engineer, other organisms, and ecological processes. The interface is geomorphological change, an interface both are aware of but study somewhat independently and differently. Interaction and integration among the two fields is the goal of this special issue. Here I take an ecological perspective of geomorphological change caused by ecosystem engineers in patches within landscapes that I hope can help facilitate this goal. I ask the following general questions: When will an ecosystem engineering species create a geomorphological signature in a landscape? What, in qualitative terms, is such a signature? How can the signature be estimated and how long will it last? What engineer attributes and ecological factors will determine signature change? What creates complications? How do the answers inform whether or not life leaves a geomorphological signature? To attempt answers, I develop a provisional, general theory of ecosystem engineering signatures that draws on and integrates a geomorphological foundation of balance between formation and decay; landscape patch dynamics; a general framework for ecosystem engineering; and empirical studies. I treat a landscape engineering signature as the balance of rates of formation (F) and rates of decay (D) across patches whose ratio value (F/D) can be transformed (> 1), intermediate (1) or untransformed (< 1). I suggest amenable systems for study. I describe how the signature can be estimated and evaluated for potential persistence, and how to identify when decay or engineer density and per capita engineering activity control the signature. I examine the influences on shifts from transformed to untransformed signatures, and vice versa, at constant and changing rates of decay. I show how the likelihood of signature shifts depends on: 1. engineer density in the landscape and per patch; 2. per capita engineering activity as structure per patch and patches per engineer, or its contribution for engineers occurring in groups; 3. the degree of patch maintenance, abandonment, and re-engineering of abandoned patches; and in some situations, 4. the direction of the signature shift that is considered. I use this to illustrate how different ecological factors affecting engineer species (e.g., abiotic resources and conditions, natural enemies) and engineer feedbacks can drive signature transitions. I address complications and how they might be dealt with for situations where an engineer species causes formation and decay; when multiple engineering species co-occur; and when patches are materially interconnected. I end by considering whether life leaves a geomorphological signature, using this to contrast my approach with biogeomorphology, and asking what a hypothetical analysis of signature patterns across many engineer species/landscape combinations might imply for the interface of ecology and biogeomorphology. © 2011 Elsevier B.V.

Schlesinger W.H.,Cary Institute of Ecosystem Studies
Global Change Biology | Year: 2010

Applications of fertilizer, often thought to enhance carbon sequestration in agricultural soils, are of no value to the mitigation of climate change if the carbon dioxide released during the production and distribution of nitrogen fertilizer exceeds the incremental carbon storage in soils from its use. Nitrogen fertilizer is also a source of the greenhouse gas nitrous oxide. The recent analysis of carbon sequestration in cropland soils of China does not apply these 'discounts' to the global warming mitigation expected from greater use of fertilizer; doing so would likely eliminate all the climate benefits of the postulated enhanced carbon sequestration. © 2009 Blackwell Publishing Ltd.

Strayer D.L.,Cary Institute of Ecosystem Studies
Freshwater Biology | Year: 2010

Biological invasions are numerous in fresh waters around the world. At least hundreds of freshwater species have been moved outside of their native ranges by vectors such as ballast water, canals, deliberate introductions, and releases from aquaria, gardens, and bait buckets. As a result, many bodies of fresh water now contain dozens of alien species. 2. Invasions are highly nonrandom with respect to the taxonomic identity and biological traits of the invaders, the ecological characteristics of the ecosystems that are invaded, and the geographical location of the ecosystems that supply and receive the invaders. 3. Some invaders have had deep and pervasive effects on the ecosystems that they invade. Classes of ecologically important invaders in fresh waters include molluscs that are primary consumers and disrupt the food web from its base, fishes that disrupt the food web from its apex or centre, decapods that act as powerful omnivores, aquatic plants that have strong engineering effects and affect the quality and quantity of primary production, and diseases, which probably have been underestimated as an ecological force. 4. The number of alien species in freshwater ecosystems will increase in the future as new aliens are moved outside of their native ranges by humans, and as established aliens fill their potential ranges. Alien species create "no-analogue" ecosystems that will be difficult to manage in the future. We may be able to reduce future impacts of invaders by making more serious efforts to prevent new invasions and manage existing invaders. 5. Thematic implications: interactions between alien species and other contemporary stressors of freshwater ecosystems are strong and varied. Because disturbance is generally thought to favour invasions, stressed ecosystems may be especially susceptible to invasions, as are highly artificial ecosystems. In turn, alien species can strongly alter the hydrology, biogeochemical cycling, and biotic composition of invaded ecosystems, and thus modulate the effects of other stressors. In general, interactions between alien species and other stressors are poorly studied. © 2010 Blackwell Publishing Ltd.

Schlesinger W.H.,Cary Institute of Ecosystem Studies
Global Change Biology | Year: 2013

A literature survey of studies reporting nitrous oxide uptake in the soils of natural ecosystems is used to suggest that the median uptake potential is 4 μg m-2 h-1. The highest values are nearly all associated with soils of wetland and peatland ecosystems. Globally, the consumption of nitrous oxide in soils is not likely to exceed 0.3 TgN yr-1, indicating that the projected sink is not more than 2% of current estimated sources of N2O in the atmosphere. © 2013 John Wiley & Sons Ltd.

Strayer D.L.,Cary Institute of Ecosystem Studies
Ecology Letters | Year: 2012

I pose eight questions central to understanding how biological invasions affect ecosystems, assess progress towards answering those questions and suggest ways in which progress might be made. The questions concern the frequency with which invasions affect ecosystems; the circumstances under which ecosystem change is most likely; the functions that are most often affected by invaders; the relationships between changes to ecosystems, communities, and populations; the long-term responses of ecosystems to invasions; interactions between biological invasions and other anthropogenic activities and the difficulty of managing undesirable impacts of non-native species. Some questions have been answered satisfactorily, others require more data and thought, and others might benefit from being reformulated or abandoned. Actions that might speed progress include careful development of trait-based approaches; strategic collection and publication of new data, including more frequent publication of negative results; replacement of expert opinion with hard data where needed; careful consideration of whether questions really need to be answered, especially in cases where answers are being provided for managers and policy-makers; explicit attention to and testing of the domains of theories; integrating invasions better into an ecosystem context; and remembering that our predictive ability is limited and will remain so for the foreseeable future. © 2012 Blackwell Publishing Ltd/CNRS.

Loading Cary Institute of Ecosystem Studies collaborators
Loading Cary Institute of Ecosystem Studies collaborators