Entity

Time filter

Source Type


Berrilli F.,University of Rome Tor Vergata | Bigazzi A.,Altran GmbH | Roselli L.,University of Perugia | Sabatini P.,Carlo Gavazzi Space SpA | And 8 more authors.
Advances in Space Research | Year: 2010

ADAHELI (ADvanced Astronomy for HELIophysics) is a small-class (500 kg) low-budget (50 MEuro) satellite mission for the study of the solar photosphere and the chromosphere and for monitoring solar flare emission. ADAHELI's design has completed its Phase-A feasibility study in December 2008, in the framework of ASI's (Agenzia Spaziale Italiana) 2007 "Small Missions" Program (calling for two missions at 50 MEeuros each, plus the launch budget). ADAHELI's main purpose is to explore Sun's lower atmosphere in the near-infrared, a region so far unexplored by solar observations from space. ADAHELI will carry out observations of the solar photosphere and of the chromosphere at high-temporal rate and high spatial and spectral resolutions. ADAHELI will contribute to the understanding of Space Weather through the study of particle acceleration during flares. A radiometer operating in the millimeter radio band will continuously monitor the solar disk, throughout the spacecraft's life time. ADAHELI's baseline instruments are a 50-cm high-resolution telescope operating in the visible and the near-infrared, and a lightweight full-disk radiometer operating at millimeter wavelengths (90 GHz). The core of the telescope's focal plane suite is the spectral imager based on two Fabry-Perot interferometers, flying for the first time on a solar mission. The instrument will return fast-cadence, full bi-dimensional spectral images at high-resolution, thus improving on current slit-scan, mono-dimensional architectures. Moreover, the possibility of working in polarized light will enable full 3D magnetic field reconstruction on the photosphere and the chromosphere. An optional instrumental package is also being proposed to further extend ADAHELI's scope: a full-disk telescope for helioseismology based on a double Magneto-Optical Filter, a Neutral Particle Analyzer for magnetospheric research, an Extreme Ultraviolet imaging and spectro-radiometry instrument. These options fall outside the prescribed budget. ADAHELI, flying a Sun-Synchronous orbit at 800 km, will perform continuous, long-duration (4-h), daily acquisitions, with the possibility of extending them up to 24 h. ADAHELI's operating life is two years, plus one extension year. Launch would be nominally planned for 2014. © 2010 COSPAR. Source


Chiarini M.,Carlo Gavazzi Space SpA | Bentini G.G.,CNR Institute for Microelectronics and Microsystems | Bianconi M.,CNR Institute for Microelectronics and Microsystems | De Nicola P.,CNR Institute for Microelectronics and Microsystems
Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms | Year: 2010

High Energy Ion Implantation (HEII) of both medium and light mass ions has been successfully applied for the surface micromachining of single crystal LiNbO3 (LN) substrates. It has been demonstrated that the ion implantation process generates high differential etch rates in the LN implanted areas, when suitable implantation parameters, such as ion species, fluence and energy, are chosen. In particular, when traditional LN etching solutions are applied to suitably ion implanted regions, etch rates values up to three orders of magnitude higher than the typical etching rates of the virgin material, are registered. Further, the enhancement in the etching rate has been observed on x, y and z-cut single crystalline material, and, due to the physical nature of the implantation process, it is expected that it can be equivalently applied also to substrates with different crystallographic orientations. This technique, associated with standard photolithographic technologies, allows to generate in a fast and accurate way very high aspect ratio relief micrometric structures on LN single crystal surface. In this work a description of the developed technology is reported together with some examples of produced micromachined structures: in particular very precisely defined self sustaining suspended structures, such as beams and membranes, generated on LN substrates, are presented. The developed technology opens the way to actual three dimensional micromachining of LN single crystals substrates and, due to the peculiar properties characterising this material, (pyroelectric, electro-optic, acousto-optic, etc.), it allows the design and the production of complex integrated elements, characterised by micrometric features and suitable for the generation of advanced Micro Electro Optical Systems (MEOS). © 2010 Elsevier B.V. All rights reserved. Source


Lorga J.F.M.,DEIMOS Engineering S.A | Silva P.F.,DEIMOS Engineering S.A | Di Cintio A.,Carlo Gavazzi Space SpA | Dovis F.,Polytechnic University of Turin | And 3 more authors.
Programme and Abstract Book - 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, NAVITEC 2010 | Year: 2010

The use of GNSS space receivers for autonomous orbit determination is receiving increasing interest due to the important economical and operational benefits made possible by the reduced on-ground operations and the improved pointing performance when associated to one Star Tracker. However, the exploitation of GNSS for navigating satellites in orbits beyond the GNSS constellations has not yet gained full acceptance among spacecraft designers, manufacturers and operators. With GPS modernization and upcoming Galileo as well as with evolving receiver technologies, the feasibility for the use of GNSS in geostationary and higher orbits must be thoroughly assessed as the number of factors involved and its impact on navigation performance is significant when compared to land user receivers. This paper describes the feasibility of GNSS receiver and Orbital Filter for Autonomous Orbit Determination and the main expected performances under different missions, environment and receiver architectures. The most critical factors affecting navigation performance are presented and studied in detail using a Software Simulation Tool in a dedicated test campaign. Main results of the test campaign are then presented, illustrating the achievable performances for GEO/GTO and HEO orbits under the different GNSS sensor configurations. The presented results show that the usage of GNSS receiver technologies with the advent of Galileo and GPS modernization offer new possibilities and superior performance for autonomous orbit determination, promising important economical and operational benefits for next generation of space users in either GEO or HEO orbits. ©2010 IEEE. Source


Trademark
Carlo Gavazzi Space SpA | Date: 2002-03-08

Designs and manufactures CompactPCI, PCI/ISA/AdvancedTCA, and VME components and systems that include custom and standard single board computers, chassis, and enclosures for the telecom, industrial, military, and medical markets.


Trademark
Carlo Gavazzi Space SpA | Date: 2002-03-08

Designs and manufactures CompactPCI, PCI/ISA/AdvancedTCA, and VME components and systems that include custom and standard single board computers, chassis, and enclosures for the telecom, industrial, military, and medical markets.

Discover hidden collaborations