Entity

Time filter

Source Type


Sternick E.B.,Biocor Instituto | Sternick E.B.,Institute Pos Graduacao | Sternick E.B.,Artemis | Lokhandwala Y.,Arrhythmia Associates | And 6 more authors.
Europace | Year: 2014

Conclusions There was no correlation between the AF pathway ablation site and the QRS axis during ADT. The 12-lead ECG during maximal pre-excitation does not predict the proper site of tricuspid annulus ablation in patients with A-V conduction over an AF pathway.Aims Unlike in the Wolff-Parkinson-White syndrome, there has been no systematic study on the role of the pre-excitation pattern in predicting the ablation site in patients with atriofascicular (AF) pathways. We assessed in a large cohort the value of the 12-lead electrocardiogram (ECG) during antidromic tachycardia (ADT) to predict the site of ablation.Methods and results Forty-five patients were studied, 23 males (51%), mean age of 27 ± 12 years with 46 AF pathways and 48 ADT using the AF pathway for A-V conduction. Inclusion required induction of a sustained ADT and successful ablation. Ablation site was assessed during LAO 45° projection and clockwise classified as hours in posteroseptal, posterolateral, lateral, anterolateral, and anteroseptal tricuspid annulus as follows: 05:00-07:00, >07:00-08:00, >08:00-09:00, >09:00-11:00, and >11:00-13:00 o'clock. The QRS axis was assessed during ADT and classified as normal (>+15°), horizontal (+15° to -30°), and superior (<-30°). During ADT axis was superior (-57° ± 10°) in 15 (31%), horizontal (-11° ± 14°) in 22 (46%), and normal (+45° ± 16°) in 11 (23%) patients. The correct ablation site did not differ between the different groups of QRS axis. QRS width during ADT was narrower in patients with a normal when compared with a horizontal and leftward axis (127 ± 14 vs. 145 ± 12 ms, P < 0.0001), and the V-H interval was shorter (4 ± 3 ms vs. 19 ± 22 ms, P = 0.03). © 2014 Published on behalf of the European Society of Cardiology. All rights reserved. Source


Van Ewijk P.A.,Maastricht University | Paglialunga S.,Maastricht University | Kooi M.E.,Maastricht University | Kooi M.E.,CARIM Cardiovascular Research Institute Maastricht | And 18 more authors.
Obesity | Year: 2015

Objective Parental high-fat feeding was proposed to negatively impact metabolic health in offspring. Here, the ectopic fat storage in heart and liver in offspring was investigated, and the effects on mitochondrial function, de novo lipogenesis, and postprandial lipid metabolism were explored in detail. Methods Male and female mice received either a high-fat (HF) or standard chow (LF) diet during mating, gestation and lactation. All offspring animals received the HF diet. Results Abdominal visceral adipose tissue tended to be higher in HF/HF mice. Cardiac lipid content was also higher in the HF/HF mice (LF/HF vs. HF/HF: 1.03% ± 0.08% vs. 1.33% ± 0.07% of water signal, P = 0.01). In contrast, hepatic lipid content tended to be lower in HF/HF mice compared to LF/HF mice. A severely disturbed postprandial lipid clearance was revealed in HF/HF mice by the results from the triglyceride (TG) tolerance tests (LF/HF vs. HF/HF: 6,753 ± 2,213 vs. 14,367 ± 1,978 mmol l-1 min-1, P = 0.01) and 13C-fatty acid retention test (LF/HF vs. HF/HF: 2.73% ± 0.85% vs. 0.89% ± 0.26% retention from bolus, P = 0.04), which may underlie the lower hepatic lipid content. Conclusions Here it is shown that HF diet negatively impacts postprandial TG clearance in offspring and results in an overall metabolic unfavorable phenotype and ectopic lipid deposition in the heart and in visceral storage sites. © 2015 The Obesity Society. Source

Discover hidden collaborations