Entity

Time filter

Source Type

Menlo Park, CA, United States

Lazarova M.,University Hospital Olomouc | Ignaszewski A.,UBC and St. Pauls Hospital Cardiology | Oudit G.Y.,University of Alberta | Dyck J.R.B.,University of Alberta | And 6 more authors.
European Journal of Heart Failure | Year: 2014

Aims Chronic heart failure is a costly epidemic that affects up to 2% of people in developed countries. The purpose of this study was to discover novel blood proteomic biomarker signatures of recovered heart function that could lead to more effective heart failure patient management by both primary care and specialty physicians. Methods and results The discovery cohort included 41 heart transplant patients and 20 healthy individuals. Plasma levels of 138 proteins were detected in at least 75% of these subjects by iTRAQ mass spectrometry. Eighteen proteins were identified that had (i) differential levels between pre-transplant patients with end-stage heart failure and healthy individuals; and (ii) levels that returned to normal by 1 month post-transplant in patients with stable heart function after transplantation. Seventeen of the 18 markers were validated by multiple reaction monitoring mass spectrometry in a cohort of 39 heart failure patients treated with drug therapy, of which 30 had recovered heart function and 9 had not. This 17-protein biomarker panel had 93% sensitivity and 89% specificity, while the RAMP® NT-proBNP assay had the same specificity but 80% sensitivity. Performance further improved when the panel was combined with NT-proBNP, yielding a net reclassification index relative to NT-proBNP of 0.28. Conclusions We have identified potential blood biomarkers of recovered heart function by harnessing data from transplant patients. These biomarkers can lead to the development of an inexpensive protein-based blood test that could be used by physicians to monitor response to therapy in heart failure, resulting in more personalized, front-line heart failure patient management. © 2014 The Authors. Source


Tanabe K.,University of Colorado at Denver | Tamura Y.,University of Colorado at Denver | Lanaspa M.A.,University of Colorado at Denver | Miyazaki M.,University of Colorado at Denver | And 8 more authors.
American Journal of Physiology - Renal Physiology | Year: 2012

Cisplatin nephropathy can be regarded as a mitochondrial disease. Intervention to halt such deleterious injury is under investigation. Recently, the flavanol (-)-epicatechin emerges as a novel compound to protect the cardiovascular system, owing in part to mitochondrial protection. Here, we have hypothesized that epicatechin prevents the progression of cisplatininduced kidney injury by protecting mitochondria. Epicatechin was administered 8 h after cisplatin injury was induced in the mouse kidney. Cisplatin significantly induced renal dysfunction and tubular injury along with an increase in oxidative stress. Mitochondrial damages were also evident as a decrease in loss of mitochondrial mass with a reduction in the oxidative phosphorylation complexes and low levels of MnSOD. The renal damages and mitochondrial injuries were significantly prevented by epicatechin treatment. Consistent with these observations, an in vitro study using cultured mouse proximal tubular cells demonstrated that cisplatin-induced mitochondrial injury, as revealed by a decrease in mitochondrial succinate dehydrogenase activity, an induction of cytochrome c release, mitochondrial fragmentation, and a reduction in complex IV protein, was prevented by epicatechin. Such a protective effect of epicatechin might be attributed to decreased oxidative stress and reduced ERK activity. Finally, we confirmed that epicatechin did not perturb the anticancer effect of cisplatin in HeLa cells. In conclusion, epicatechin exhibits protective effects due in part to its ability to prevent the progression of mitochondrial injury in mouse cisplatin nephropathy. Epicatechin may be a novel option to treat renal disorders associated with mitochondrial dysfunction. © 2012 the American Physiological Society. Source


Tamura Y.,University of Colorado at Denver | Tanabe K.,University of Colorado at Denver | Kitagawa W.,University of Colorado at Denver | Uchida S.,Teikyo University | And 3 more authors.
American Journal of Physiology - Renal Physiology | Year: 2012

Nicorandil exhibits a protective effect in the vascular system, which is thought to be due to vasodilatation from opening ATP-dependent potassium channels and donation of nitric oxide. Recently, nicorandil was shown to be renoprotective in models of acute kidney injury and glomerulone-phritis. However, the specific mechanisms of renoprotection are unclear. We evaluated the effect of nicorandil on the rat remnant kidney model of chronic kidney disease. Blood pressure was unchanged by a 10-wk course of nicorandil, while albuminuria was significantly reduced. Glomerular injury and tubulointerstitial injury were also ameliorated by nicorandil. Oxidative stress, as noted by renal nitrotyrosine level and urine 8-hydroxy-2′-deoxyguanosine, were elevated in this model and was significantly reduced by nic-orandil treatment. Treatment was associated with maintenance of the mitochondrial antioxidant, manganese SOD, in podocytes and with suppression of xanthine oxidase expression in infiltrating macro-phages. Interestingly, these two cell types express sulfonylurea receptor 2 (SUR2), a binding site of nicorandil in the ATP-dependent K channel. Consistently, we found that stimulating SUR2 with nic-orandil prevented angiotensin II-mediated upregulation of xanthine oxidase in the cultured macrophage, while xanthine oxidase expression was rather induced by blocking SUR2 with glibenclamide. In conclusion, nicorandil reduces albuminuria and ameliorates renal injury by blocking oxidative stress in chronic kidney disease. © 2012 the American Physiological Society. Source


Tanabe K.,University of Colorado at Denver | Lanaspa M.A.,University of Colorado at Denver | Kitagawa W.,University of Colorado at Denver | Rivard C.J.,University of Colorado at Denver | And 8 more authors.
American Journal of Physiology - Renal Physiology | Year: 2012

Nicorandil is an orally available drug that can act as a nitric oxide donor, an antioxidant, and an ATP-dependent K channel activator. We hypothesized that it may have a beneficial role in treating diabetic nephropathy. We administered nicorandil to a model of advanced diabetic nephropathy (the streptozotocin-induced diabetes in mice lacking endothelial nitric oxide synthase, eNOSKO); controls included diabetic eNOS KO mice without nicorandil and nondiabetic eNOS KO mice treated with either nicorandil or vehicle. Mice were treated for 8 wk. Histology, blood pressure, and renal function were determined. Additional studies involved examining the effects of nicorandil on cultured human podocytes. Here, we found that nicorandil did not affect blood glucose levels, blood pressure, or systemic endothelial function, but significantly reduced proteinuria and glomerular injury (mesangiolysis and glomerulosclerosis). Nicorandil protected against podocyte loss and podocyte oxidative stress. Studies in cultured podocytes showed that nicorandil likely protects against glucose-mediated oxidant stress via the ATP-dependent K channel as opposed to its NO-stimulating effects. In conclusion, nicorandil may be beneficial in diabetic nephropathy by preserving podocyte function. We recommend clinical trials to determine whether nicorandil may benefit diabetic nephropathy or other conditions associated with podocyte dysfunction. © 2012 the American Physiological Society. Source


Patent
Cardero Therapeutics Inc. | Date: 2013-03-22

The present invention relates to compounds and compositions and their application as pharmaceuticals for treating, preventing, or reversing injury to skeletal or cardiac muscles, for treating or preventing diseases relating to the structure and function of skeletal or cardiac muscle, and for inducing regeneration or restructuring of skeletal or cardiac muscle as a means of treating diseases relating to abnormalities in skeletal or cardiac muscle structure and function in a human or animal subject.

Discover hidden collaborations