Carboforexpert

Genève, Switzerland

Carboforexpert

Genève, Switzerland
SEARCH FILTERS
Time filter
Source Type

Rutishauser E.,CarboForExpert | Rutishauser E.,CIRAD - Agricultural Research for Development | Herault B.,UMR Ecofog | Baraloto C.,French National Institute for Agricultural Research | And 23 more authors.
Current Biology | Year: 2015

Summary While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production [1]. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity [2,3]. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al.[4] found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin [5] to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions. © 2015 Elsevier Ltd.


Slik J.W.F.,University of Brunei Darussalam | Arroyo-Rodriguez V.,National Autonomous University of Mexico | Aiba S.-I.,Kagoshima University | Alvarez-Loayza P.,Duke University | And 175 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2015

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa. © 2015, National Academy of Sciences. All rights reserved.


PubMed | National University of Colombia, Brown University, Manchester Metropolitan University, Instituto Federal do Espirito Santo and 110 more.
Type: Journal Article | Journal: Proceedings of the National Academy of Sciences of the United States of America | Year: 2015

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fishers alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between 40,000 and 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.


PubMed | CIFOR, Jardin Botanico Joaquin Antonio Uribe, Red para la Mitigacion y Adaptacion al Cambio Climatico de la UNAD, Herbario Universitario and 63 more.
Type: | Journal: Scientific reports | Year: 2017

Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

Loading Carboforexpert collaborators
Loading Carboforexpert collaborators