Houston, TX, United States
Houston, TX, United States

Time filter

Source Type

Patent
Carbo Ceramics | Date: 2016-11-22

An in-line treatment cartridge and methods of using same are disclosed. The in-line treatment cartridge can include a cylindrical body configured to allow fluid to flow therethrough and a plurality of particulates contained within the body. At least one particulate of the plurality of particulates can include a chemical treatment agent. The at least one chemical treatment agent can separate from the at least one particulate upon contact with a fluid.


Proppant having amphiphobic coatings and methods for making and using same are disclosed. The proppant having amphiphobic coatings can include a proppant particle having a size from about 8 mesh to about 140 mesh, density of less than about 4.0 g/cm^(3), and a coating containing an amphiphobic material formed on an outer surface of the proppant particle.


Patent
Carbo Ceramics | Date: 2015-11-24

Lightweight proppant particles are disclosed. The lightweight proppant particle can include a proppant particle having an apparent specific gravity of at least about 1.5 g/cc, a coating of a hydrophobic material formed on an outer surface of the proppant particle, and a coating of an amphiphilic material formed on an outer surface of the coating of the hydrophobic material.


Methods for logging a well utilizing natural radioactivity originating from clay based particulates are disclosed. The methods can include utilizing a gravel pack slurry containing a liquid and gravel pack particles to hydraulically place the particles into a gravel pack zone of a borehole penetrating a subterranean formation and obtaining a post gravel pack data set by lowering into the borehole traversing the subterranean formation a gamma ray detector and detecting gamma rays resulting from a native radioactivity of the gravel pack particles. The methods can further include using the post gravel pack data set to determine a location of the gravel pack particles and correlating the location of the gravel-pack particles to a depth measurement of the borehole to determine the location, height, and/or percent fill of gravel-pack particles placed in the gravel pack zone of the borehole.


A method for making proppant particles is provided. The method can include providing a slurry of ceramic raw material, the slurry containing a reactant including a polycarboxylic acid, and flowing the slurry through a nozzle in a gas while vibrating the slurry to form droplets. The method can also include receiving the droplets in a vessel containing a liquid having an upper surface in direct contact with the gas, the liquid containing a coagulation agent. The method can further include reacting the reactant with the coagulation agent to cause coagulation of the reactant in the droplets. The droplets can then be transferred from the liquid and dried to form green pellets. The method can include sintering the green pellets in a selected temperature range to form the proppant particles. In one or more exemplary embodiments, the reactant can be or include a PMA:PAA copolymer.


Electrically conductive proppant particles having non-uniform electrically conductive coatings are disclosed. The non-uniform electrically conductive coatings can have a thickness of at least about 10 nm formed on an outer surface of a sintered, substantially round and spherical particle, wherein less than 95% of the outer surface of the sintered, substantially round and spherical particle is coated with the electrically conductive material. Methods for making and using such electrically conductive proppant particles having non-uniform electrically conductive coatings are also disclosed.


Methods and systems for infusing ceramic proppant and infused ceramic proppant obtained therefrom are provided. The method can include introducing ceramic proppant and a chemical treatment agent to a mixing vessel, mixing the ceramic proppant and the chemical treatment agent in the mixing vessel to provide a mixture, introducing microwave energy to the mixing vessel to heat the mixture to a temperature sufficient to produce infused ceramic proppant containing at least a portion of the chemical treatment agent, and withdrawing the infused ceramic proppant from the mixing vessel.


Systems and methods for generating a three-dimensional image of a proppant-filled hydraulically-induced fracture in a geologic formation are provided. The image may be generated by capturing electromagnetic fields generated or scattered by the proppant-filled fracture, removing dispersion and/or an attenuation effects from the captured electromagnetic fields, and generating the image based on the dispersion and/or attenuation corrected fields. Removing the dispersion and/or attenuation effects may include back propagating the captured electromagnetic fields in the time domain to a source location. The image may be generated based on locations at which the back propagated fields constructively interfere or may be generated based on a model of the fracture defined using the back propagated fields.


Methods and compositions using surface chemistry and internal porosity of proppant particulates to consolidate the proppant particulates are described herein. The methods can include a method of gravel packing a wellbore. The method can include mixing an activator, a thickener, a crosslinker and a plurality of resin-coated proppant particulates to provide a gravel pack fluid and introducing the gravel pack fluid into a gravel pack region of the wellbore. The method can also include consolidating at least a portion of the plurality of resin-coated proppant particulates to provide a consolidated gravel pack, wherein the consolidated gravel pack has a UCS of at least about 60 psi when formed under a pressure of about 0.01 psi to about 50 psi and a temperature of about 160 F. to about 250 F.


Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

Loading Carbo Ceramics collaborators
Loading Carbo Ceramics collaborators