Entity

Time filter

Source Type


Simon R.R.,Cantox Health science International | Marks V.,University of Surrey | Leeds A.R.,University of Surrey | Leeds A.R.,Copenhagen University | Anderson J.W.,University of Kentucky
Diabetes/Metabolism Research and Reviews | Year: 2011

Glucosamine (GlcN) is a widely utilized dietary supplement that is used to promote joint health. Reports that oral GlcN supplementation at usual doses adversely affects glucose metabolism in subjects with impaired glucose tolerance have raised concerns that GlcN should be contraindicated in individuals with diabetes and those at risk for developing it. This review addresses its potential, when used at typical doses, to affect glucose metabolism and insulin sensitivity in healthy individuals and those with diabetes or 'pre-diabetes'. Publicly available scientific information and data on GlcN were systematically compiled using the electronic search tool, Dialog ®, and reviewed with special emphasis on human studies. In long-term clinical trials, including those containing subjects with type 2 diabetes or 'pre-diabetes', GlcN produced a non-significant lowering of fasting blood glucose concentrations in all groups of subjects treated for periods of up to 3 years. Owing to limitations in study design, conclusions based on studies that report adverse affects of GlcN on insulin sensitivity and glucose tolerance in pre-diabetic subjects are suspect. However, no definitive long-term studies of GlcN use for individuals with pre-diabetes are available. Nevertheless, based on available evidence, we conclude that GlcN has no effect on fasting blood glucose levels, glucose metabolism, or insulin sensitivity at any oral dose level in healthy subjects, individuals with diabetes, or those with impaired glucose tolerance. © 2010 John Wiley & Sons, Ltd. Source


Card J.W.,Ashuren Health science | Magnuson B.A.,Cantox Health science International
International Journal of Toxicology | Year: 2010

As reports on the safety of various nanomaterials have yielded conflicting results, assessment of the reliability of each study is required to objectively interpret overall safety of the nanomaterial. A 2-step method to assess the quality of nanotoxicity studies is described. The first step uses a publicly available tool to rank the reliability of the study based on adequacy of design and documentation of methods, materials, and results, providing a "study score." The second step determines the completeness of physicochemical characterization of the nanomaterial/nanomaterials assessed within the study, providing a "nanomaterial score." This approach is encouraged to promote the notion that for studies conducted with nanomaterials, the combination of a reliable study and sufficient nanomaterial characterization is of significantly greater value than either of these alone. It is anticipated that the use and evolution of this approach will assist with the design and interpretation of studies assessing nanomaterial toxicity. © The Author(s) 2010. Source


Adams T.B.,Flavor and Extract Manufacturers Association | Gavin C.L.,Flavor and Extract Manufacturers Association | McGowen M.M.,Flavor and Extract Manufacturers Association | Waddell W.J.,University of Louisville | And 7 more authors.
Food and Chemical Toxicology | Year: 2011

This publication is the thirteenth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Since then, the number of flavoring substances has grown to more than 2600 substances. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of aliphatic and aromatic terpene hydrocarbons as flavoring ingredients are evaluated. The group of aliphatic and aromatic terpene hydrocarbons was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food; their rapid absorption, metabolic detoxication, and excretion in humans and other animals; their low level of flavor use; the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic potential. © 2011 Elsevier Ltd. Source


Tafazoli S.,Cantox Health science International | Wong A.W.,Cantox Health science International | Kajiura H.,Ezaki Glico Co. | Kajiura H.,Glico Foods Co. | And 4 more authors.
Regulatory Toxicology and Pharmacology | Year: 2010

An enzymatically-synthesized glycogen (ESG), intended for use as a food ingredient, was investigated for potential toxicity. ESG is synthesized in vitro from short-chain amylose by the co-operative action of branching enzyme and amylomaltase. In an acute toxicity study, oral administration of ESG to Sprague-Dawley rats at a dose of 2000. mg/kg body weight did not result in any signs of toxicity. ESG did not exhibit mutagenic activity in an in vitro bacterial reverse mutation assay. In a subchronic toxicity study, increased cecal weights noted in the mid- (10%) and high-dose (30%) animals are common findings in rodents fed excess amounts of carbohydrates that increase osmotic value of the cecal contents, and thus were considered a physiological rather than toxicological response. The hematological and histopathological effects observed in the high-dose groups were of no toxicological concern as they were secondary to the physiological responses resulting from the high carbohydrate levels in the test diets. The no-observed-adverse-effect level for ESG in rats was therefore established to be 30% in the diet (equivalent to approximately 18 and 21. g/kg body weight/day for male and female rats, respectively). These results support the safety of ESG as a food ingredient for human consumption. © 2010 Elsevier Inc. Source


Phillips K.M.,Virginia Polytechnic Institute and State University | Horst R.L.,AMES Inc. | Koszewski N.J.,Iowa State University | Simon R.R.,Cantox Health science International
PLoS ONE | Year: 2012

An unknown vitamin D compound was observed in the HPLC-UV chromatogram of edible mushrooms in the course of analyzing vitamin D2 as part of a food composition study and confirmed by liquid chromatography-mass spectrometry to be vitamin D4 (22-dihydroergocalciferol). Vitamin D4 was quantified by HPLC with UV detection, with vitamin [3H] itamin D3 as an internal standard. White button, crimini, portabella, enoki, shiitake, maitake, oyster, morel, chanterelle, and UV-treated portabella mushrooms were analyzed, as four composites each of a total of 71 samples from U.S. retail suppliers and producers. Vitamin D4 was present (>0.1 μg/100 g) in a total of 18 composites and in at least one composite of each mushroom type except white button. The level was highest in samples with known UV exposure: vitamin D enhanced portabella, and maitake mushrooms from one supplier (0.2-7.0 and 22.5-35.4 μg/100 g, respectively). Other mushrooms had detectable vitamin D4 in some but not all samples. In one composite of oyster mushrooms the vitamin D4 content was more than twice that of D2 (6.29 vs. 2.59 μg/100 g). Vitamin D4 exceeded 2 μg/100 g in the morel and chanterelle mushroom samples that contained D4, but was undetectable in two morel samples. The vitamin D4 precursor 22,23-dihydroergosterol was found in all composites (4.49-16.5 mg/100 g). Vitamin D4 should be expected to occur in mushrooms exposed to UV light, such as commercially produced vitamin D enhanced products, wild grown mushrooms or other mushrooms receiving incidental exposure. Because vitamin D4 coeluted with D3 in the routine HPLC analysis of vitamin D2 and an alternate mobile phase was necessary for resolution, researchers analyzing vitamin D2 in mushrooms and using D3 as an internal standard should verify that the system will resolve vitamins D3 and D4. © 2012 Phillips et al. Source

Discover hidden collaborations