Tokyo, Japan
Tokyo, Japan

Canon Inc. Kyanon kabushiki-gaisha is a Japanese multinational corporation specialized in the manufacture of imaging and optical products, including cameras, camcorders, photocopiers, steppers, computer printers and medical equipment. Its headquarters are located in Ōta, Tokyo, Japan.Canon has a primary listing on the Tokyo Stock Exchange and is a constituent of the TOPIX index. It has a secondary listing on the New York Stock Exchange. Wikipedia.


Time filter

Source Type

The present disclosure provides apparatuses and methods for color imaging and an increased field of view using spectrally encoded endoscopy techniques. At least one of the apparatuses includes an illumination unit having two or more spectrally dispersive gratings positioned, for example, on different planes or on the same plane but having grating vectors at an angle to each other such that bands of spectrally dispersed light propagating from the gratings propagate on different planes.


The invention relates to methods and devices for control of an integrated thin-film device with a plurality of microfluidic channels. In one embodiment, a microfluidic device is provided that includes a microfluidic chip having a plurality of microfluidic channels and a plurality of multiplexed heater electrodes, wherein the heater electrodes are part of a multiplex circuit including a common lead connecting the heater electrodes to a power supply, each of the heater electrodes being associated with one of the microfluidic channels. The microfluidic device also includes a control system configured to regulate power applied to each heater electrode by varying a duty cycle, the control system being further configured to determine the temperature each heater electrode by determining the resistance of each heater electrode.


A system and method are provided including one or more processors and one or more computer-readable media coupled to the one or more processors. The one or more computer-readable media storing instructions that, when executed by the one or more processors, cause the one or more processors to perform operation including performing, at an image processing device, a login process wherein access to one or more resources on the image processing device is granted based on a credential associated with a user and receiving a request to perform a scan and send process is received at the image processing device, the request comprising instructions for scanning a physical document and sending an electronic document representing the scanned physical document to a destination system. The scan process is initiated and a data object including data representing job data and the credential associated with the use is generated. The send process using the generated data object is executed as a background process on the image processing device and a subsequent user is able to access the image processing device and use at least one resource of the image processing device simultaneously.


Patent
Canon Inc. | Date: 2016-08-01

A transmission light source unit includes a first light source portion including: a first light source; and a first light guide that shapes light emitted by the first light source into a line and emits the light toward a conveyance path of a paper sheet. An image sensor unit includes: a second light source portion that emits light toward the conveyance path of the paper sheet; and an image sensor that detects the light emitted by the first light source portion and transmitted through the paper sheet and the light emitted by the second light source portion and reflected by the paper sheet. A first light diffusing surface of the first light guide is provided with at least one of concave portions and convex portions including inclined surfaces and inclined relative to a normal line of the first light emission surface.


The invention relates to methods and devices for control of an integrated thin-film device with a plurality of microfluidic channels. In one embodiment, a microfluidic device is provided that includes a microfluidic chip having a plurality of microfluidic channels and a plurality of multiplexed heater electrodes, wherein the heater electrodes are part of a multiplex circuit including a common lead connecting the heater electrodes to a power supply, each of the heater electrodes being associated with one of the microfluidic channels. The microfluidic device also includes a control system configured to regulate power applied to each heater electrode by varying a duty cycle, the control system being further configured to determine the temperature each heater electrode by determining the resistance of each heater electrode.


Patent
Canon Inc. | Date: 2017-01-06

A system for amplifying nucleic acids is disclosed which, in one embodiment, includes a fluidic device having a sample channel and a heat exchange channel disposed sufficiently close to the sample channel such that a heat exchange fluid in the heat exchange channel can cause a sample in the sample channel to gain or lose heat at desired levels. In one illustrative embodiment, the system further includes three reservoirs coupled to the heat exchange channel and a temperature control system configured to heat fluids stored in the respective reservoirs at different temperatures. One or more pumps and a controller are configured to cause fluid stored in the reservoirs to enter and flow through the heat exchange channel at different times.


The invention relates to methods and devices for control of an integrated thin-film device with a plurality of microfluidic channels. In one embodiment, a microfluidic device is provided that includes a microfluidic chip having a plurality of microfluidic channels and a plurality of multiplexed heater electrodes, wherein the heater electrodes are part of a multiplex circuit including a common lead connecting the heater electrodes to a power supply, each of the heater electrodes being associated with one of the microfluidic channels. The microfluidic device also includes a control system configured to regulate power applied to each heater electrode by varying a duty cycle, the control system being further configured to determine the temperature each heater electrode by determining the resistance of each heater electrode.


Patent
Canon Inc. | Date: 2017-05-31

An encoder includes a scale (10,40) including a continuous part (103) where physical characteristics varies and a discontinuous part (104) that interrupts the continuous part, a detector (20) that be relatively displaced with respect to the scale and that detects the physical characteristics of the scale, and a processor (30,31) that detects an origin of the scale on the basis of a signal for displacement detection output from the detector. The detector includes a sensitive part (2021) having sensitivity contributing to the signal for displacement detection and an insensitive part (2022) having no sensitivity contributing to the signal for displacement detection. The processor detects the origin on the basis of signal intensity of each of signals for displacement detection that the detector outputs when the sensitive and insensitive parts detect physical characteristics of the discontinuous part.


Patent
Canon Inc. | Date: 2016-11-22

An encoder includes a scale having a continuous part where physical characteristics varies and a discontinuous part that interrupts the continuous part, a detector that be relatively displaced with respect to the scale and that detects the physical characteristics of the scale, and a processor that detects an origin of the scale on the basis of a signal for displacement detection output from the detector. The detector includes a sensitive part having sensitivity contributing to the signal for displacement detection and an insensitive part having no sensitivity contributing to the signal for displacement detection. The processor detects the origin on the basis of signal intensity of each of signals for displacement detection that the detector outputs when the sensitive and insensitive parts detect physical characteristics of the discontinuous part.


A microfluidic chip having integrated heaters and a method for manufacturing the microfluidic chip is provided. Specifically, the microfluidic chip comprises a first substrate having a microchannel formed therein. The second substrate is bonded to the first substrate to encapsulate the microchannel. An integrated heating element, that is hermetically sealed and electrically isolated from the microchannel, is formed on the top surface the second substrate after the first and second substrates are bonded together. A biological reaction can be performed in the microchannel of the microfluidic chip while the fluid in the microchannel is heated by electrical current passing through the integrated heating element.

Loading Canon Inc. collaborators
Loading Canon Inc. collaborators