Time filter

Source Type

Yap T.A.,Cancer Research UK Research Institute | Walton M.I.,Cancer Research UK Research Institute | Grimshaw K.M.,Astex | Te Poele R.H.,Cancer Research UK Research Institute | And 18 more authors.
Clinical Cancer Research

Purpose: Deregulated phosphatidylinositol 3-kinase pathway signaling through AGC kinases including AKT, p70S6 kinase, PKA, SGK and Rho kinase is a key driver of multiple cancers. The simultaneous inhibition of multiple AGC kinases may increase antitumor activity and minimize clinical resistance compared with a single pathway component. Experimental Design: We investigated the detailed pharmacology and antitumor activity of the novel clinical drug candidate AT13148, an oral ATP-competitive multi-AGC kinase inhibitor. Gene expression microarray studies were undertaken to characterize the molecular mechanisms of action of AT13148. Results: AT13148 caused substantial blockade of AKT, p70S6K, PKA, ROCK, and SGK substrate phosphorylation and induced apoptosis in a concentration and time-dependent manner in cancer cells with clinically relevant genetic defects in vitro and in vivo. Antitumor efficacy in HER2-positive, PIK3CA-mutant BT474 breast, PTEN-deficient PC3 human prostate cancer, and PTEN-deficient MES-SA uterine tumor xenografts was shown. We show for the first time that induction of AKT phosphorylation at serine 473 by AT13148, as reported for other ATP-competitive inhibitors of AKT, is not a therapeutically relevant reactivation step. Gene expression studies showed that AT13148 has a predominant effect on apoptosis genes, whereas the selective AKT inhibitor CCT128930 modulates cell-cycle genes. Induction of upstream regulators including IRS2 and PIK3IP1 as a result of compensatory feedback loops was observed. Conclusions: The clinical candidate AT13148 is a novel oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity, which shows a distinct mechanism of action from other AKT inhibitors. AT13148 will now be assessed in a first-in-human phase I trial. ©2012 American Association for Cancer Research. Source

Guest R.D.,Cellular Therapeutics | Kirillova N.,Cellular Therapeutics | Mowbray S.,Cellular Therapeutics | Gornall H.,University of Manchester | And 10 more authors.
Cancer Immunology, Immunotherapy

Adoptive cell therapy employing gene-modified T-cells expressing chimeric antigen receptors (CARs) has shown promising preclinical activity in a range of model systems and is now being tested in the clinical setting. The manufacture of CAR T-cells requires compliance with national and European regulations for the production of medicinal products. We established such a compliant process to produce T-cells armed with a first-generation CAR specific for carcinoembryonic antigen (CEA). CAR T-cells were successfully generated for 14 patients with advanced CEA+ malignancy. Of note, in the majority of patients, the defined procedure generated predominantly CD4+ CAR T-cells with the general T-cell population bearing an effector-memory phenotype and high in vitro effector function. Thus, improving the process to generate less-differentiated T-cells would be more desirable in the future for effective adoptive gene-modified T-cell therapy. However, these results confirm that CAR T-cells can be generated in a manner compliant with regulations governing medicinal products in the European Union. © 2013 Springer-Verlag Berlin Heidelberg. Source

Danson S.J.,University of Manchester | Danson S.J.,Paterson Institute for Cancer Research | Johnson P.,Cancer Research Clinical Center | Ward T.H.,Paterson Institute for Cancer Research | And 12 more authors.
Annals of Oncology

Background: This trial describes a first-in-man evaluation of RH1, a novel bioreductive drug activated by DT-diaphorase (DTD), an enzyme overexpressed in many tumours. Patients and methods: A dose-escalation phase I trial of RH1 was carried out. The primary objective was to establish the maximum tolerated dose (MTD) of RH1. Secondary objectives were assessment of toxicity, pharmacokinetic determination of RH1 and pharmacodynamic assessment of drug effect through measurement of DNA cross linking in peripheral blood mononuclear cells (PBMCs) and tumour, DTD activity in tumour and NAD(P)H:quinone oxidoreductase 1 (NQO1) polymorphism status. Results: Eighteen patients of World Health Organization performance status of zero to one with advanced refractory solid malignancies were enrolled. MTD was 1430 μg/m2/day with reversible bone marrow suppression being dose limiting. Plasma pharmacokinetic analysis showed RH1 is rapidly cleared from blood (t1/2 = 12.3 min), with AUC increasing proportionately with dose. The comet-X assay demonstrated dose-related increases in DNA cross linking in PBMCs. DNA cross linking was demonstrated in tumours, even with low levels of DTD. Only one patient was homozygous for NQO1 polymorphism precluding any conclusion of its effect. Conclusions: RH1 was well tolerated with predictable and manageable toxicity. The MTD of 1430 μg/m2/day is the dose recommended for phase II trials. The biomarkers of DNA cross linking, DTD activity and NQO1 status have been validated and clinically developed. © The Author 2011. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. Source

Taylor G.S.,University of Birmingham | Jia H.,University of Birmingham | Harrington K.,Institute of Cancer Research | Lee L.W.,Christie NHS Foundation Trust | And 14 more authors.
Clinical Cancer Research

Purpose: Epstein-Barr virus (EBV) is associated with several cancers in which the tumor cells express EBV antigens EBNA1 and LMP2. A therapeutic vaccine comprising a recombinant vaccinia virus, MVA-EL, was designed to boost immunity to these tumor antigens. A phase I trial was conducted to demonstrate the safety and immunogenicity of MVA-EL across a range of doses. Experimental Design: Sixteen patients in the United Kingdom (UK) with EBV-positive nasopharyngeal carcinoma (NPC) received three intradermal vaccinations of MVA-EL at 3-weekly intervals at dose levels between 5 × 107 and 5 × 108 plaque-forming units (pfu). Blood samples were taken at screening, after each vaccine cycle, and during the post-vaccination period. T-cell responses were measured using IFNγ ELISpot assays with overlapping EBNA1/LMP2 peptide mixes or HLA-matched epitope peptides. Polychromatic flow cytometry was used to characterize functionally responsive T-cell populations. Results: Vaccination was generally well tolerated. Immunity increased after vaccination to at least one antigen in 8 of 14 patients (7/14, EBNA1; 6/14, LMP2), including recognition of epitopes that vary between EBV strains associated with different ethnic groups. Immunophenotypic analysis revealed that vaccination induced differentiation and functional diversification of responsive T-cell populations specific for EBNA1 and LMP2 within the CD4 and CD8 compartments, respectively. Conclusions: MVA-EL is safe and immunogenic across diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally as well as in South-East Asia where NPC is most common. The highest dose (5 × 108 pfu) is recommended for investigation in current phase IB and II trials. ©2014 AACR. Source

Hui E.P.,Chinese University of Hong Kong | Taylor G.S.,University of Birmingham | Jia H.,University of Birmingham | Ma B.B.Y.,Chinese University of Hong Kong | And 10 more authors.
Cancer Research

Epstein-Barr virus (EBV) is associated with several malignancies including nasopharyngeal carcinoma, a high incidence tumor in Chinese populations, in which tumor cells express the two EBV antigens EB nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2). Here, we report the phase I trial of a recombinant vaccinia virus, MVA-EL, which encodes an EBNA1/LMP2 fusion protein designed to boost T-cell immunity to these antigens. The vaccine was delivered to Hong Kong patients with nasopharyngeal carcinoma to determine a safe and immunogenic dose. The patients, all in remission more than 12 weeks after primary therapy, received three intradermal MVA-EL vaccinations at three weekly intervals, using five escalating dose levels between 5 × 107 and 5 × 108 plaque-forming unit (pfu). Blood samples were taken during prescreening, immediately before vaccination, one week afterward and at intervals up to one year later. Immunogenicity was tested by IFN-γ ELIspot assays using complete EBNA1 and LMP2 15-mer peptide mixes and known epitope peptides relevant to patient MHC type. Eighteen patients were treated, three per dose level one to four and six at the highest dose, without dose-limiting toxicity. T-cell responses to one or both vaccine antigens were increased in 15 of 18 patients and, in many cases, were mapped to known CD4 and CD8 epitopes in EBNA1 and/or LMP2. The range of these responses suggested a direct relationship with vaccine dose, with all six patients at the highest dose level giving strong EBNA1/LMP2 responses. We concluded that MVA-EL is both safe and immunogenic, allowing the highest dose to be forwarded to phase II studies examining clinical benefit. © 2012 American Association for Cancer Research. Source

Discover hidden collaborations