Entity

Time filter

Source Type

Jersey City, NJ, United States

Puzio-Kuter A.M.,Cancer Institute of New Jersey
Genes and Cancer | Year: 2011

The metabolic changes that occur in a cancer cell have been studied for a few decades, but our appreciation of the complexity and importance of those changes is now being realized. The metabolic switch from oxidative phosphorylation to aerobic glycolysis provides intermediates for cell growth and division and is regulated by both oncogenes and tumor suppressor genes. The p53 tumor suppressor gene has long been shown to play key roles in responding to DNA damage, hypoxia, and oncogenic activation. However, now p53 has added the ability to mediate metabolic changes in cells through the regulation of energy metabolism and oxidative stress to its repertoire of activities. It is therefore the focus of this review to discuss the metabolic pathways regulated by p53 and their cooperation in controlling cancer cell metabolism. © The Author(s) 2011.


Kerrigan J.E.,Cancer Institute of New Jersey
Methods in Molecular Biology | Year: 2013

This minireview focuses on recent developments in the application of molecular dynamics to drug design. Recent applications of endpoint free-energy computational methods such as molecular mechanics Poisson- Boltzmann surface area (MM-PBSA) and generalized Born surface area (MM-GBSA) and linear response methods are described. Recent progress in steered molecular dynamics applied to drug design is reviewed. © Springer Science+Business Media, LLC 2013.


Lu X.,Princeton University | Kang Y.,Princeton University | Kang Y.,Cancer Institute of New Jersey
Clinical Cancer Research | Year: 2010

Hypoxia is a common condition found in a wide range of solid tumors and is often associated with poor prognosis. Hypoxia increases tumor glycolysis, angiogenesis, and other survival responses, as well as invasion and metastasis by activating relevant gene expressions through hypoxia-inducible factors (HIF). HIF-1α and HIF-2α undergo oxygen-dependent regulation, and their overexpression is frequently associated with metastasis and poor clinical outcomes. Recent studies show that each step of the metastasis process, from the initial epithelial-mesenchymal transition to the ultimate organotropic colonization, can potentially be regulated by hypoxia, suggesting a master regulator role of hypoxia and HIFs in metastasis. Furthermore, modulation of cancer stem cell self-renewal by HIFs may also contribute to the hypoxia-regulated metastasis program. The hypoxia-induced metastatic phenotype may be one of the reasons for the modest efficacy of antiangiogenic therapies and may well explain the recent provocative findings that antiangiogenic therapy increased metastasis in preclinical models. Multiple approaches to targeting hypoxia and HIFs, including HIF inhibitors, hypoxia-activated bioreductive prodrugs, and gene therapies may become effective treatments to prevent or reduce metastasis. ©2010 AACR.


White E.,Cancer Institute of New Jersey | White E.,Johnson University | White E.,Rutgers University
Nature Reviews Cancer | Year: 2012

Autophagy (also known as macroautophagy) captures intracellular components in autophagosomes and delivers them to lysosomes, where they are degraded and recycled. Autophagy can have two functions in cancer. It can be tumour suppressive through the elimination of oncogenic protein substrates, toxic unfolded proteins and damaged organelles. Alternatively, it can be tumour promoting in established cancers through autophagy-mediated intracellular recycling that provides substrates for metabolism and that maintains the functional pool of mitochondria. Therefore, defining the context-specific role for autophagy in cancer and the mechanisms involved will be important to guide autophagy-based therapeutic intervention. © 2012 Macmillan Publishers Limited. All rights reserved.


Sethi N.,Princeton University | Dai X.,Merck And Co. | Winter C.G.,Merck And Co. | Kang Y.,Princeton University | Kang Y.,Cancer Institute of New Jersey
Cancer Cell | Year: 2011

Despite evidence supporting an oncogenic role in breast cancer, the Notch pathway's contribution to metastasis remains unknown. Here, we report that the Notch ligand Jagged1 is a clinically and functionally important mediator of bone metastasis by activating the Notch pathway in bone cells. Jagged1 promotes tumor growth by stimulating IL-6 release from osteoblasts and directly activates osteoclast differentiation. Furthermore, Jagged1 is a potent downstream mediator of the bone metastasis cytokine TGFβ that is released during bone destruction. Importantly, γ-secretase inhibitor treatment reduces Jagged1-mediated bone metastasis by disrupting the Notch pathway in stromal bone cells. These findings elucidate a stroma-dependent mechanism for Notch signaling in breast cancer and provide rationale for using γ-secretase inhibitors for the treatment of bone metastasis. © 2011 Elsevier Inc.

Discover hidden collaborations