Cancer Epigenetics and Biology Program PEBC

Barcelona, Spain

Cancer Epigenetics and Biology Program PEBC

Barcelona, Spain
Time filter
Source Type

Vidal A.,Hospital Universitari Of Bellvitge | Munoz C.,Hospital Duran i Reynals | Guillen M.-J.,PharmaMar S.A | Moreto J.,Cancer Epigenetics and Biology Program PEBC | And 20 more authors.
Clinical Cancer Research | Year: 2012

Purpose: Epithelial ovarian cancer (EOC) is the fifth leading cause of death in women diagnosed with gynecologic malignancies. The low survival rate is because of its advanced-stage diagnosis and either intrinsic or acquired resistance to standard platinum-based chemotherapy. So, the development of effective innovative therapeutic strategies to overcome cisplatin resistance remains a high priority. Experimental Design: To investigate new treatments in in vivo models reproducing EOCs tumor growth, we generated a preclinical model of ovarian cancer after orthotopic implantation of a primary serous tumor in nude mice. Further, matched model of acquired cisplatin-resistant tumor version was successfully derived in mice. Effectiveness of lurbinectedin (PM01183) treatment, a novel marine-derived DNA minor groove covalent binder, was assessed in both preclinical models as a single and a combined-cisplatin agent. Results: Orthotopically perpetuated tumor grafts mimic the histopathological characteristics of primary patients' tumors and they also recapitulate in mice characteristic features of tumor response to cisplatin treatments. We showed that single lurbinectedin or cisplatin-combined therapies were effective in treating cisplatin-sensitive and cisplatin-resistant preclinical ovarian tumor models. Furthermore, the strongest in vivo synergistic effect was observed for combined treatments, especially in cisplatin-resistant tumors. Lurbinectedin tumor growth inhibition was associated with reduced proliferation, increased rate of aberrant mitosis, and subsequent induced apoptosis. Conclusions: Taken together, preclinical orthotopic ovarian tumor grafts are useful tools for drug development, providing hard evidence that lurbinectedin might be a useful therapy in the treatment of EOC by overcoming cisplatin resistance. ©2012 AACR.

Sandoval J.,Cancer Epigenetics and Biology Program PEBC | Heyn H.A.,Cancer Epigenetics and Biology Program PEBC | Moran S.,Cancer Epigenetics and Biology Program PEBC | Serra-Musach J.,Catalan Institute of Nanoscience and Nanotechnology | And 5 more authors.
Epigenetics | Year: 2011

DNA methylation is the most studied epigenetic mark and CpG methylation is central to many biological processes and human diseases. Since cancer has highlighted the contribution to disease of aberrant DNA methylation patterns, such as the presence of promoter CpG island hypermethylation-associated silencing of tumor suppressor genes and global DNA hypomethylation defects, their importance will surely become apparent in other pathologies. However, advances in obtaining comprehensive DNA methylomes are hampered by the high cost and time-consuming aspects of the single nucleotide methods currently available for whole genome DNA methylation analyses. Following the success of the standard CpG methylation microarrays for 1,505 CpG sites and 27,000 CpG sites, we have validated in vivo the newly developed 450,000 (450K) cytosine microarray (Illumina). The 450K microarray includes CpG and CNG sites, CpG islands/shores/shelves/open sea, non-coding RNA (microRNAs and long non-coding RNAs) and sites surrounding the transcription start sites (-200 bp to -1,500 bp, 5'-UTRs and exons 1) for coding genes, but also for the corresponding gene bodies and 3'-UTRs, in addition to intergenic regions derived from GWAS studies. Herein, we demonstrate that the 450K DNA methylation array can consistently and significantly detect CpG methylation changes in the HCT-116 colorectalcancer cell line in comparison with normal colon mucosa or HCT-116 cells with defective DNA methyltransferases (DKO). The provided validation highlights the potential use of the 450K DNA methylation microarray as a useful tool for ongoing and newly designed epigenome projects. © 2011 Landes Bioscience.

PubMed | Chinese Academy of Sciences, Karolinska Institutet, Tumour Suppression, Xenopat S.L. and 5 more.
Type: Journal Article | Journal: Nature medicine | Year: 2016

Patients with advanced Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant lung adenocarcinoma are currently treated with standard chemotherapy because of a lack of efficacious targeted therapies. We reasoned that the identification of mediators of Kras signaling in early mouse lung hyperplasias might bypass the difficulties that are imposed by intratumor heterogeneity in advanced tumors, and that it might unveil relevant therapeutic targets. Transcriptional profiling of Kras(G12V)-driven mouse hyperplasias revealed intertumor diversity with a subset that exhibited an aggressive transcriptional profile analogous to that of advanced human adenocarcinomas. The top-scoring gene in this profile encodes the tyrosine kinase receptor DDR1. The genetic and pharmacological inhibition of DDR1 blocked tumor initiation and tumor progression, respectively. The concomitant inhibition of both DDR1 and Notch signaling induced the regression of KRAS;TP53-mutant patient-derived lung xenografts (PDX) with a therapeutic efficacy that was at least comparable to that of standard chemotherapy. Our data indicate that the combined inhibition of DDR1 and Notch signaling could be an effective targeted therapy for patients with KRAS-mutant lung adenocarcinoma.

Javier Carmona F.,Cancer Epigenetics and Biology Program PEBC | Azuara D.,Translational Research Laboratory | Berenguer-Llergo A.,Hospitalet Of Llobregat | Berenguer-Llergo A.,CIBER ISCIII | And 21 more authors.
Cancer Prevention Research | Year: 2013

DNAmethylation biomarkers for noninvasive diagnosis of colorectal cancer (CRC) and precursor lesions have been extensively studied. Different panels have been reported attempting to improve current protocols in clinical practice, although no definite biomarkers have been established. In the present study, we have examined patient biopsies starting from a comprehensive analysis of DNA methylation differences between paired normal and tumor samples in known cancer-related genes aiming to select the best performing candidates informative for CRC diagnosis in stool samples. Five selected markers were considered for subsequent analyses in independent biologic cohorts and in silico data sets. Among the five selected genes, three of them (AGTR1, WNT2 and SLIT2) were validated in stool DNA of affected patients with a detection sensitivity of 78% [95% confidence interval (CI), 56%- 89%]. As a reference,DNAmethylation of VIM and SEPT9 was evaluated in a subset of stool samples yielding sensitivities of55%and 20%, respectively. Moreover, our panel may complement histologic and endoscopic diagnosis of inflammatory bowel disease (IBD)-associated neoplasia, as it was also efficient detecting aberrant DNA methylation in non-neoplastic tissue samples from affected patients. This novel panel of specific methylation markers can be useful for early diagnosis of CRC using stool DNA and may help in the follow-up of high-risk patients with IBD.

Loading Cancer Epigenetics and Biology Program PEBC collaborators
Loading Cancer Epigenetics and Biology Program PEBC collaborators