Time filter

Source Type

Södertälje, Sweden

Hernlund E.,Cancer Center Karolinska R8 00 | Olofsson M.H.,Cancer Center Karolinska R8 00 | Fayad W.,Cancer Center Karolinska R8 00 | Fryknas M.,Uppsala University Hospital | And 9 more authors.
European Journal of Cancer | Year: 2012

Purpose: Regrowth of tumour cells between cycles of chemotherapy is a significant clinical problem. Treatment strategies where antiproliferative agents are used to inhibit tumour regrowth between chemotherapy cycles are attractive, but such strategies are difficult to test using conventional monolayer culture systems. Methods: We used the in vitro tumour spheroid model to study regrowth of 3-D colon carcinoma tissue after cytotoxic therapy. Colon carcinoma cells with wild-type or mutant phosphatidyl inositol 3-kinase catalytic subunit (PI3KCA) or KRAS alleles were allowed to form multicellular spheroids and the effects of different pharmacological compounds were studied after sectioning and staining for relevant markers of cell proliferation and apoptosis. Results: Studies using colon cancer cells with gene disruptions suggested that the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway was essential for proliferation in 3-D culture. The dual PI3K-mTOR inhibitor NVP-BEZ235, currently in clinical trials, was found to inhibit phosphorylation of the mTOR target 4EBP1 in 3-D cultured cells. The ability of NVP-BEZ235 to inhibit tumour cell proliferation and to induce apoptosis was markedly more pronounced in 3-D cultures compared to monolayer cultures. It was subsequently found that NVP-BEZ235 was effective in inhibiting regrowth of 3-D cultured cells after treatment with two cytotoxic inhibitors of the ubiquitin-proteasome system (UPS), methyl-13-hydroxy-15-oxokaurenoate (MHOK) and bortezomib (Velcade®). Conclusions: The dual PI3K-mTOR inhibitor NVP-BEZ235 was found to reduce cell proliferation and to induce apoptosis in 3-D cultured colon carcinoma cells, NVP-BEZ235 is a promising candidate for use in sequential treatment modalities together with cytotoxic drugs to reduce the cell mass of solid tumours. © 2011 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations