Cancer and Developmental Epigenetics Group

Parkville, Australia

Cancer and Developmental Epigenetics Group

Parkville, Australia
SEARCH FILTERS
Time filter
Source Type

Gordon L.,Murdoch Childrens Research Institute | Joo J.E.,Cancer and Developmental Epigenetics Group | Joo J.E.,University of Melbourne | Powell J.E.,University of Queensland | And 18 more authors.
Genome Research | Year: 2012

Comparison between groups of monozygotic (MZ) and dizygotic (DZ) twins enables an estimation of the relative contribution of genetic and shared and nonshared environmental factors to phenotypic variability. Using DNA methylation profiling of ∼20,000 CpG sites as a phenotype, we have examined discordance levels in three neonatal tissues from 22 MZ and 12 DZ twin pairs. MZ twins exhibit a wide range of within-pair differences at birth, but show discordance levels generally lower than DZ pairs.Within-pairmethylation discordance was lowest in CpG islands in all twins and increased as a function of distance from islands. Variance component decomposition analysis of DNA methylation in MZ and DZ pairs revealed a low mean heritability across all tissues, although a wide range of heritabilities was detected for specific genomic CpG sites. The largest component of variation was attributed to the combined effects of nonshared intrauterine environment and stochastic factors. Regression analysis of methylation on birth weight revealed a general association between methylation of genes involved in metabolism and biosynthesis, providing further support for epigenetic change in the previously described link between low birth weight and increasing risk for cardiovascular, metabolic, and other complex diseases. Finally, comparison of our data with that of several older twins revealed little evidence for genome-wide epigenetic drift with increasing age. This is the first study to analyze DNA methylation on a genome scale in twins at birth, further highlighting the importance of the intrauterine environment on shaping the neonatal epigenome.

Loading Cancer and Developmental Epigenetics Group collaborators
Loading Cancer and Developmental Epigenetics Group collaborators