Espoo, Finland
Espoo, Finland

Time filter

Source Type

Research and Markets has announced the addition of the "3D Printing 2017-2027: Technologies, Markets, Players" report to their offering. This report discusses all of the commercially-significant existing technologies and promising emerging technologies in depth, and analyses both the current and future markets for 3D printing. The market structure is also detailed, and we present profiles of the major players together with insights gained from in-depth interviews with a range of companies involved in 3D printing. We also present detailed forecasts for the future of the 3D printing market. The aerospace industry, an established end user of 3D printing, has the highest growth rate of any end user industry. The trillion dollar oil and gas industry is an emerging user of 3D printing with the second highest forecast growth. When significant penetration has occurred into the above markets, 3D printing in these big industries will lock into the capital expenditure cycles associated with them, and, as is the case for other CNC machines, periodic fluctuations in sales will occur -growth will not be steady and monotonic. The following technologies are covered in detail including lists of all major vendors for each technology type and SWOT analyses with quantitative data and references to vendors: - Stereolithography - Digital Light Processing - Inkjetted photopolymers - Thermoplastic extrusion - Selective Laser Sintering of plastics - Selective Laser Melting of metals - Blown metal powder - Welding - Sand binding - Binder jetted into metal powder (by ExOne) - Smooth Curvature Printing (by Solidscape) - Selective Deposition Lamination (by Mcor Technologies) - Hybrid CNC  This report gives forecasts to 2027 in the following forms: 1. Market forecast by industry (bioprinting, automotive, aerospace, consumer products, medical, oil & gas, hobbyist, dental, education and jewelry) 2. Market share by industry 3. Market forecast growth by industry 4. Market forecast by revenue stream (printer, materials, services) 5. Market forecast for printers and materials by price. 6. Market forecast for printers and materials by technology type. 7. Mapping the 3DP landscape by size, precision, speed and price. Applications are detailed for: - Manufacture of flight-critical production parts in metals - Mold making for metal casting - Edutainment - Art - Modelling - Rapid prototyping - Tooling  Key Topics Covered: 1. Executive Summary 2. Introduction 3. Key Drivers And Restraints 4. Printing Processes And Materials 5. Market Structure 6. Market Analysis 7. Applications 8. Forecasts 9. Company Profiles - 3D Ceram - 3D Systems Europe - 3Dponics - Advanc3d Materials - Advanced Powders and Coatings - AgIC - Arcam - Arcam AB - Arevo Labs - Argen Corporation - BMW - Beijing Jiruixintian Technology Co., Ltd. - Beijing Tiertime Technology Co Ltd - Biobots - Blacktrace Holdings Ltd - BluePrinter ApS - Boeing - BotFactory - CRP Group - Canatu - Carima Ltd - Cartesian Co - Chemcubed - Concept Laser GMBH - Cookson Precious Metals - DSM Somos - Digilab Inc. - Dyson - EOS GmbH - EPSRC - Efesto LLC - EnvisionTEC Gmbh - Evonik - Exceltec - Fabrisonic LLC - Ford Motor Company - Formlabs - Fraunhofer IWU - Fripp Design Ltd - Graphene 3D Lab - Heraeus New Businesses - HÖGANÄS - Impossible Objects - LPW Technology Ltd - Leapfrog 3D Printers - Legor Group - Lockheed Martin - Lomiko Metals - Luxexcel - Maker Juice - Materialise - MaukCC - MesoScribe Technologies - MicroFab - n3D Biosciences, Inc. - nScrypt - Nano Dimension - Nascent Objects, Inc - NinjaFlex (Fenner Drives) - Norsk Titanium - Optomec - Orbital Composites - Organovo Holdings, Inc. - Oxford Performance Materials - Photocentric - Poietis - Rahn AG - Realizer GmbH - Reebok International - RegenHU Ltd - RepRap Professional Limited - Ricoh - Roland DGA Corporation - Sandvik - Sciaky Inc. - Sinterit Sp. z o.o. - Sintratec AG - Solidscape - Star Prototype - Stratasys - TLC Korea - Taulman3D - TeVido BioDevices - The ExOne Company - The NanoSteel Company - Toner Plastics Inc. - Viridis 3D - Volvo Construction Equipment - Voxel8 - Voxeljet Technology GmbH - Wanhao - ZMorph For more information about this report visit http://www.researchandmarkets.com/research/h4dp9h/3d_printing Research and Markets Laura Wood, Senior Manager press@researchandmarkets.com For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900 U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716


Research and Markets has announced the addition of the "The Nanocoatings Global Opportunity Report" report to their offering. 'The Nanocoatings Global Opportunity Report' examines a market that is already providing significant economic, hygiene and environmental benefit for sectors such as consumer electronics, construction, medicine & healthcare, textiles, oil & gas, infrastructure and aviation. Research and development in nanotechnology and nanomaterials is now translating into tangible consumer products, providing new functionalities and opportunities in industries such as electronics, sporting goods, wearable electronics, textiles, construction etc. A recent example is quantum dot TVs, a multi-billion dollar boon for the High-definition TV market. Countless other opportunities exist for exploiting the exceptional properties of nanomaterials and these will increase as costs come down and production technologies improve. The incorporation of nanomaterials into thin films, coatings and surfaces leads to new functionalities, completely innovative characteristics and the possibility to achieve multi-functional coatings and smart coatings. The use of nanomaterials also results in performance enhancements in wear, corrosion-wear, fatigue and corrosion resistant coatings. Nanocoatings demonstrate significant enhancement in outdoor durability and vastly improved hardness and flexibility compared to traditional coatings. - Oil and gas - - Corrosion and scaling chemical inhibitors. - - Self-healing coatings. - - Smart coatings. - - Coatings for hydraulic fracturing. - Aerospace & aviation - - Shape memory coatings. - - Corrosion resistant coatings for aircraft parts. - - Thermal protection. - - Novel functional coatings for prevention of ice-accretion and insect-contamination. - Renewable energy - - Anti-fouling protective coatings for offshore marine structures. - - Anti-reflective solar module coatings. - - Ice-phobic wind turbines. - - Coatings for solar heating and cooling. - Automotive - - Anti-fogging nanocoatings and surface treatments. - - Improved mar and scratch resistance. - - Flexible glass. - - Corrosion prevention. - - Multi-functional glazing. - - Smart surfaces. - - Surface texturing technologies with enhanced gloss. - - New decorative and optical films. - - Self-healing. - Textiles & Apparel - - Sustainable coatings. - - High UV protection. - - Smart textiles. - - Electrically conductive textiles. - - Enhanced durability and protection. - - Anti-bacterial and self-cleaning. - - Water repellent while maintaining breathability.. - Medical - - Hydrophilic lubricious, hemocompatible, and drug delivery coatings. - - Anti-bacterial coatings to prevent bacterial adhesion and biofilm formation. - - Hydrophobic and super-hydrophobic coatings. - - Lubricant coatings. - - Protective implant coatings. - - High hardness coatings for medical implants. - - Infection control. - - Antimicrobial protection or biocidic activity. - Marine - - Anti-fouling and corrosion control coatings systems. - - Reduced friction coatings. - - Underwater hull coatings. - Buildings - - Thermochromic smart windows. - - Anti-reflection glazing. - - Self-cleaning surfaces. - - Passive cooling surfaces. - - Air-purifying. - Consumer electronics - - Waterproof electronic devices. - - Anti-fingerprint touchscreens. - Global market size for target markets - Addressable markets for nanocoatings, by nanocoatings type and industry - Estimated market revenues for nanocoatings to 2025 - 300 company profiles including products and target markets 1 Executive Summary 1.1 High performance coatings 1.2 Nanocoatings 1.3 Market drivers and trends 1.4 Market size and opportunity 1.5 Market and technical challenges 2 Introduction 2.1 Properties of nanomaterials 2.2 Categorization 2.3 Nanocoatings 2.4 Hydrophobic coatings and surfaces 2.5 Superhydrophobic coatings and surfaces 2.6 Oleophobic and omniphobic coatings and surfaces 6 Market Segment Analysis, By Coatings Type 6.1 Anti-Fingerprint Nanocoatings 6.2 Anti-Microbial Nanocoatings 6.3 Anti-Corrosion Nanocoatings 6.4 Abrasion & Wear-Resistant Nanocoatings 6.5 Barrier Nanocoatings 6.6 Anti-Fouling And Easy-To-Clean Nanocoatings 6.7 Self-Cleaning (Bionic) Nanocoatings 6.8 Self-Cleaning (Photocatalytic) Nanocoatings 6.9 Uv-Resistant Nanocoatings 6.10 Thermal Barrier And Flame Retardant Nanocoatings 6.11 Anti-Icing And De-Icing 6.12 Anti-Reflective Nanocoatings 6.13 Other Nanocoatings Types 7 Market Segment Analysis, By End User Market 7.1 Aerospace 7.2 Automotive 7.3 Construction, Architecture And Exterior Protection 7.4 Electronics 7.5 Household Care, Sanitary And Indoor Air Quality 7.6 Marine 7.7 Medical & Healthcare 7.8 Military And Defence 7.9 Packaging 7.10 Textiles And Apparel 7.11 Renewable Energy 7.12 Oil And Gas Exploration 7.13 Tools And Manufacturing 7.14 Anti-Counterfeiting - 3M - Abrisa Technologies - Accucoat, inc - Aculon, Inc - Acreo Engineering - ACTNano, inc - Advanced Materials-JTJ S.R.O - Advanced Silicon Group - Advenira Enterprises, Inc - Aeonclad Coatings - agPolymer S.r.l - Agienic Antimicrobials - Agion Technologies, Inc - AkzoNobel - Albert Rechtenbacher GmbH - ALD Nanosolutions, Inc - Alexium, Inc - AM Coatings - Analytical Services & Materials, Inc - Ancatt - Applied Nanocoatings, Inc - Applied Nano Surfaces - Applied Sciences, Inc - Applied Thin Films, Inc - ARA-Authentic GmbH - Asahi Glass Co., Ltd - Autonomic Materials - Aurolab - Avaluxe International GmbH - Bactiguard AB - BASF Corporation - Battelle - Beijing ChamGo Nano-Tech Co., Ltd., - Beneq OY - BigSky Technologies LLC - Biocote Ltd - Bio-Gate AG - Bioni CS GmbH - Bionic Technology Holding BV - Boral Limited - Buhler Partec - BYK-Chemie GmbH - California Nanotechnologies Corporation - Cambridge Nanotherm Limited - Cambrios Technologies Corporation - Canatu Oy - Carbodeon Ltd. Oy - Ceko Co., Ltd - Cellutech AB - CeNano GmbH & Co. KG - Cellmat Technologies S.L - Centrosolar Glas GmbH Co. KG - Cetelon Nanotechhnik GmbH - CG2 Nanocoatings, Inc - Cima Nanotech - Clarcor Industrial Air - Clariant Produkte (Deutschland) GmbH - Cleancorp Nanocoatings - Clearbridge Technologies Pte. Ltd - Clearjet Ltd - Clou - CMR Coatings GmbH - CNM Technologies GmbH - Coating Suisse GmbH - Corning, Incorporated - Cotec GmbH - Coval Molecular Coatings - Crossroads Coatings - CSD Nano, Inc - CTC Nanotechnology GmbH - C3 Nano - Cytonix CLLC - Daicel FineChem Limited - Daikin Industries, ltd - Diamon-Fusion International, Inc - Diarc-Technology Oy - DFE Chemie GmbH - Dow Corning - Dropwise Technologies Corporation - DryWired - Dry Surface Technologies LLC - DSP Co., Ltd - Duralar Technologies - Duraseal Coatings - Eeonyx Corporation - Eikos, Inc - Engineered Nanoproducts Germany AG - Enki Technology - Envaerospace, Inc - Eurama Corporation - Europlasma NV - Excel Coatings - Evonik Hanse - Few Chemicals GmbH - FN Nano, Inc - ForgeNano - Formacoat - Fujifilm - Fumin - FutureCarbon GmbH - Future Nanocoatings - General Paints - Green Earth nano Science, Inc - Green Millenium, Inc - Grenoble INP-Pagora - Grupo Repol - GSI Creos - GVD Corporation - GXC Coatings - Hanita Coatings - Hardide Coatings - HeiQ Materials AG - Hemoteq GmbH - Henkel AG & Co. KGaA - Hexis S.A - Hiab Products - Hitachi Chemical - Honeywell International, Inc - Hy-Power Nano, Inc - HzO, Inc - Hygratek, LLC - iFyber, LLC - Imbed Biosciences, Inc - Imerys - Industrial Nanotech, Inc - Inframat Corporation - INM - Leibniz Institute for New Materials - InMat, Inc - InMold Biosystems - Innovcoat Nanocoatings and Surface Technologies Inc - Inno-X - Innventia AB - Inspiraz Technology pte LTd - Instrumental Polymer Technologies LLC - Ishihara Sangyo Kaisha, Ltd - Integrated Surface Technologies, Inc - Integran Technologies, Inc - Integricote - Interlotus Nanotechnologie GmbH - Intumescents Associates Group - ISTN, Inc - ISurTech - ITN Nanovation AG - Izovac Ltd - JNC Corporation - Joma International AS - Jotun Protective Coatings - Kaneka Corporation - Klockner Pentaplast Europe GmbH & Co. KG - Kon Corporation - Kriya Materials B.V - Laiyang Zixilai Environment Protection Technology Co., Ltd - Life Air Iaq Ltd - Lintec of America, Inc., - Liquiglide, Inc - Liquipel, LLC - Lofec Nanocoatings - Lotus Applied Technology - Lotus Leaf Coatings - Luna Innovtions - Magnolia Solar - MDS Coating Technologies Corporation - Melodea - Merck Performance Materials - Mesocoat, Inc - Metal Estalki - Millidyne Oy - MMT Textiles Limited - Modumetal, Inc - Molecular Rebar - Muschert - N2 Biomedical - Naco Technologies, Inc - Nadico Technologie GmbH - Nagase & Co - Nanohygienix LLC - Namos GmbH - Nanobiomatters S.I - Nano-care AG - NanoCover A/S - Nanocure GmbH - Nanocyl - Nanofilm, Ltd - Nano Frontier Technology - Nanoex Company - Nanogate AG - Nanohmics - Nanohorizons, Inc - Nanokote Pty Ltd - Nanomate Technology - Nano Labs Corporation - NanoLotus Scandanavia Aps - Nanomembrane - NanoPack, Inc - NanoPhos SA - Nanopool GmbH - Nanops - Nanoservices BV - Nanoshell Ltd - Nanosol AG - Nanosonic, Inc - The NanoSteel Company, Inc - Nano Surface Solutions - NanoSys GmbH - Nanotech Security Corporation - Nano-Tex, Inc - NanoTouch Materials, LLC - Nanovere Technologies, LLC - Nanovis Incorporated - Nanoveu Pte. LTD - Nanowave Co., Ltd - Nano-X GmbH - Nanoyo Group Pte Ltd - Nanto Protective Coating - NBD Nano - NEI Corporation - Nelum Sciences LLC - Nelumbo - Neverwet LLC - NGimat - NIL Technology ApS - Nissan Chemical Industries Ltd - NOF Corporation - NTC Nanotech Coatings GmbH - n-tec GmbH - NTT Advanced Technology Corporation - Oceanit - Opticote Inc - Optics Balzers Ag - Optitune International Pte - Organiclick AB - Oxford Advanced SUrfaces - P2i Ltd - Panahome Corporation - Percenta AG - Perpetual Technologies, Inc - Philippi-Hagenbuch, Inc - Picosun Oy - Pioneer Medical Devices GmbH - Pneumaticicoat Technologies - PJI Contract Pte Ltd - Polymerplus, LLC - Powdermet, Inc - PPG Industries - Promimic AB - Pureti, Inc - Quantiam Technologies, Inc, - RBNano - Reactive Surfaces, LLP - Resodyn Corporation - Rochling Engineering Plastics - Royal DSM N.V - Saint-Gobain Glass - Sandvik Materials Technology - Sarastro GmbH - Schott AG - Seashell Technology LLC-Hydrobead - Semblant - Shandong Huimin Science & Technology Co., Ltd - Sharklet Technologies, Inc - Shin-Etsu Silicones - SHM - Sioen Industries NV - SiO2 Nanotech, LLC - Sketch Co., Ltd - Slips Technology - Sono-Tek Corporation - Spartan Nano Ltd - Starfire Systems, inc - Sub-One Technology, INc - Sumitomo Electric Hard-Metal Ltd - Suncoat GmbH - SupraPolix BV - SurfaceSolutions GmbH - Surfactis Technologies SAS - Surfatek LLC - Surfix BV - Suzhou Super Nano-Textile Teco Co - Takenake Seisakusho Co., Ltd - Tesla Nanocoatings - Theta Coatings - TNO - TopChim NV - Topasol LLC - Toray Advanced Film Co., Ltd - Toto - TripleO Performance Solution - Ultratech International, Inc - Vadlau GmbH - Valentis Nanotech - Vestagen Protective Technologies, Inc - Viriflex - VTT Technical Research Center - Wacker Chemie AG - Wattglass, LLC - Well Shield LLC - Zschimmer & Schwarz For more information about this report visit http://www.researchandmarkets.com/research/4ktr5t/the_nanocoatings Research and Markets is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.


Friedrichshafen/Stuttgart, 15-Feb-2017 — /EuropaWire/ — STARTUP AUTOBAHN was founded in May 2016 as an open innovation and cooperation platform for start-ups and existing companies from the fields of Mobility and Industry 4.0. It addresses both international and local start-ups and partner companies. The founding members of the initiative alongside Daimler AG are the US partner Plug & Play Tech Center in its role as start-up accelerator and investor, the University of Stuttgart plus the research factory ARENA2036. At the EXPO Day in Stuttgart STARTUP AUTOBAHN presents its new partners of the growing network platform. The founding members are therefore delighted to welcome new partners. Beside ZF have also come Hewlett Packard Enterprise (HPE), BASF, Porsche and Maruta as other partners. A common characteristic of all the sponsors is their aim to anchor the pioneering and founding spirit even more strongly in the industrial region of Stuttgart and the local start-up scene. “The partnership with STARTUP AUTOBAHN is an important complement to our digital strategy”, says Mamatha Chamarthi, Chief Digital Officer (CDO), ZF Friedrichshafen AG. “With this cooperation, ZF gets closer to young and innovative enterprises from the fields of Mobility and Industry 4.0.” Started in May 2016, the innovation and cooperation platform between established companies and start-ups has successfully completed the first programme with the EXPO Day at ARENA2036 on the campus of the University of Stuttgart. A big day for the 13 start-ups Otonomo, Noveto, blickshift, Gauzy, n-join, TruckPad, Free2Move (formerly CarJump), Evopark, Vayyar, Hopon, Argus, 4tiitoo and Canatu: On 9 February, the entrepreneurs presented their innovative ideas centred on the key topics Mobility and Industry 4.0 in front of some 1000 people who listened with great interest. By taking part in the first three-month STARTUP AUTOBAHN programme, as part of pilot projects with Daimler AG, special coaching sessions or with support from mentors the selected start-ups were able to considerably advance their companies.


Grant
Agency: European Commission | Branch: FP7 | Program: BSG-SME | Phase: SME-2011-1 | Award Amount: 1.50M | Year: 2011

The general objective of the Electronic paper message board for outdoor use with carbon NanoBud display module and GPRS I/O layer (E-SIGNAGE) project is to develop a large area, low-cost, high brightness and contrast level, robust, energy efficient (bi-stable; no backlight needed), high information content two-colour electronic outdoor message board that is able to receive data via GSM communication and uses solar energy as a power source. Twist-ball e-paper material developed by Invent Research O (coordinator; SME, Estonia) has the principle capabilities to meet all the quality requirements set by the end-users for active front-plane layers of outdoor electronic signage and message boards (OEMBs). It is potentially highly robust and flexible, has high bi-stability, wide operating temperatures and low production costs. In addition the material is video capable that widens the usage areas of OEMBs. Carbon nanomaterials (Carbon nanotubes and NanoBuds) developed by Canatu (partner; SME, Finland) have the principle capabilities to meet all the quality requirement set by end-users for the transparent electrode front-plane layers and thin film transistor backplane layers of OEMBs. Canatus nanocarbon films are highly robust and flexible, have high carrier mobility, on-off ratios and exceptional optical properties such as high transparency, colour neutrality and excellent index matching. Moreover, Canatus Direct Dry Printing technology allows low cost, high volume production. Further development of Invent Researchs and Canatus materials in combination with the existing OEMB components will enable the partners of the proposal to develop autonomous and good picture quality OEMB applications. It would be necessary to develop the quality characteristics (brightness and contrast level, resolution, stability in time and in UV light) of the e-paper material (front-plane) for using in OEMBs; develop carbon nanomaterials based front-plane electrodes and backplane transistors; integrate the front-planes/backplanes with other OEMB components; and develop the necessary software.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: FoF-ICT-2011.7.2 | Award Amount: 14.01M | Year: 2012

TREASORES will demonstrate the production of large area organic electronics using high throughput manufacturing technologies based on roll-to-roll (R2R) wet deposition processes. In particular, by developing large area (>1m2) transparent conducting barrier foils which will be used for the production of flexible organic light-emitting devices (OLED), light-emitting electrochemical devices (LEC) and flexible organic photovoltaics (OPV). This industry-driven project is a sustainable approach towards low cost production of organic thin film optoelectronic devices using low-temperature (<180C) fabrication methods.\nTREASORES has a comprehensive, systematic approach including the fabrication of three 3 substrate and barrier layers, 4 novel transparent electrode layers, high-performance devices (Eff. >25 lm/W for OLED and LEC; Eff.>5%) made from organic semiconductors as well as reliable encapsulation (LEC lifetime>5000h, OLED lifetime >10000h). Testing, reliability validation and disposal issues are an integral part of the project. A key objective is to demonstrate the scale-up of novel flexible, transparent (Tr>90%) and conductive (R< 10/square) substrates to replace the widespread use of indium tin oxide (ITO). To keep production costs low (190 < /m2), roll-to-roll processes will be applied all the way from the manufacturing of components to devices. Emphasis will be given to organic semiconductors that have proven to be efficient and stable on the laboratory scale. Scale-up of device area (>100cm2) to high throughput production (web speed >1m/min.) without degradation of performance or yield is a key objective of the project. Flexible encapsulation foils shall use the most advanced barrier materials and will be made available in large enough surface area to be compatible with prototype device fabrication on a pilot scale.\nExploitation is ensured by the participation of manufacturers concerned with OLED, LEC and OPV devices, by the clear pathway from laboratory development to pilot production (using the same processes) and by the extensive experience of the academic partners in collaborating with industry.


Patent
Canatu Oy | Date: 2010-09-02

A touch screen (13) on a display device (1), and a method for manufacturing a touch screen (13) on a display device (1). The display device (1)has an upper substrate (12) for protecting the display device (1) from the environment, the touch screen (13) comprising an electrically conductive transparent first layer (16). The first layer (16) comprises a network of electrically conductive high aspect ratio molecular structures (HARM-structures), the first layer (16) being embedded into the upper substrate (12) of the display device (1)to protect the conductive transparent first layer (16), for reducing the optical thickness of the structure between a viewer and the region of the display device (1) in which the image is formed.


Patent
Canatu Oy | Date: 2016-06-08

A deposit of material according to the present invention comprises carbon nanobud molecules. The carbon nanobud molecules are bonded to each other via at least one fullerene group (2). An electrical device according to the present invention comprises a deposit comprising carbon nanobud molecules. The electrical device according to the present invention may be e.g. a transistor (18), a field emitter (17, 19), a transparent electrode (15, 24, 28, 30), a capacitor (31), a solar cell (32), a light source, a display element or a sensor (33).


Patent
Canatu Oy | Date: 2016-08-23

The present invention relates to covalently bonded fullerene-functionalized carbon nanotubes(CBFFCNTs), a method and an apparatus for their production and to their end products. CBFFCNTs are carbon nanotubes with one or more fullerenes or fullerene based molecules covalently bonded to the nanotube surface. They are obtained by bringing one or more catalyst particles, carbon sources and reagents together in a reactor.


A structure comprising high aspect ratio molecular structures (HARM-structures), wherein the structure comprises an essentially planar network (2) of HARM-structures, and a support (3) in contact with the network (2). The support (3) has an opening (5) therein, at the peripheral region (4) of which opening (5) the network (2) is in contact with the support (3), such that the middle part of the network (2) is unsupported by the support (3). The network (2) comprises essentially randomly oriented HARM-structures.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: SME-2013-3 | Award Amount: 2.97M | Year: 2014

The aim of the E-Signage Demo project is to explore the market potential and prepare the market launch of a widely usable outdoor electronic signage and message board (OEMB) display module based on a fundamentally new display technology in combination with transparent electrode front-plane layers. As an example, the OEMB display module can integrated into OEMB device that consists of a display module, power supply i.e. a solar cell system, GPRS modules, software, and is used for transmitting visual information. The demo-project draws on the outcomes of a successful FP7 project E-SIGNAGE (Nov. 2011- April 2013) where the partners developed a low-cost, durable, high brightness and contrast level, energy efficient (bi-stable; no backlight needed), high information content two colour electronic outdoor message board device that is able to receive data via GSM communication and uses solar energy as a power source. However, usage possibilities of the display module that was developed as a part of the OEMB device under E-SIGNAGE are not limited with the original OEMB device structure. Therefore in order to have a wider applications possibility and through this a wider impact on the SME participants / overall market, current project partners are focusing on exploring its extended market potential. This exploration will be followed up by viability verification and market launch preparation activities for reducing the gap between the OEMB display module developed by E-SIGNAGE and the market.

Loading Canatu Oy collaborators
Loading Canatu Oy collaborators