Entity

Time filter

Source Type


Balaguer M.P.,CSIC - Institute of Agricultural Chemistry and Food Technology | Fajardo P.,Campus Universitario 16 | Gartner H.,Michigan State University | Gomez-Estaca J.,CSIC - Institute of Agricultural Chemistry and Food Technology | And 3 more authors.
International Journal of Food Microbiology | Year: 2014

Gliadin films cross-linked with cinnamaldehyde (1.5, 3, and 5%) and incorporated with natamycin (0.5%) were prepared by casting, and their antifungal activity, water resistance, and barrier properties were characterized. Incorporation of natamycin gave rise to films with greater water uptake, weight loss and diameter gain, and higher water vapor and oxygen permeabilities. These results may be associated to a looser packing of the protein chains as a consequence of the presence of natamycin. The different cross-linking degree of the matrices influenced the natamycin migration to the agar test media, increasing from 13.3 to 23.7 (μg/g of film) as the percentage of cinnamaldehyde was reduced from 5% to 1.5%. Antifungal activity of films was assayed against common food spoilage fungi (Penicillium species, Alternaria solani, Colletotrichum acutatum). The greatest effectiveness was obtained for films containing natamycin and treated with 5% of cinnamaldehyde. The level of cinnamaldehyde reached in the head-space of the test assay showed a diminishing trend as a function of time, which was in agreement with fungal growth and cinnamaldehyde metabolization. Developed active films were used in the packaging of cheese slices showing promising results for their application in active packaging against food spoilage. © 2013. Source


Ferreira M.,Campus Universitario 16 | Cabado A.G.,Campus Universitario 16 | Chapela M.-J.,Campus Universitario 16 | Fajardo P.,Campus Universitario 16 | And 4 more authors.
Environmental Toxicology and Pharmacology | Year: 2011

Six species of marine sponges collected at intertidal and sublittoral sites of the coast of Galicia (NW Spain) were screened for potential cytotoxic properties on Neuroblastoma BE(2)-M17 cell line. Exposure to Halichondria panicea, Pachymatisma johnstonia, Ophlitaspongia seriata and Haliclona sp. aqueous extracts strongly affected cell appearance, inducing loss of neuron-like morphology and the formation of clumps. Extracts from these species also caused significant rates of cell detachment and decrease of mitochondrial membrane potential. Incubation with P. johnstonia, O. seriata and Suberites massa extracts also decreased the rate of cell proliferation. The increase of incubation time enhanced propidium iodide uptake by neuroblastoma cells. Toxic responses triggered by sponge extracts are compatible with apoptotic phenomena in neuroblastoma cells, even though increasing propidium uptake at long periods of exposure might indicate the induction of secondary necrosis. The cytotoxic properties of the tested extracts suggest the presence of compounds with potential pharmacological or biotechnological applications in the screened sponge species. © 2011 Elsevier B.V. Source

Discover hidden collaborations